993 resultados para LEG PERFORMANCE
Resumo:
The aim of the present study was to compare performance and physiological responses during arm and leg aerobic power tests of combat duration in male child, cadet and senior judo athletes. Power output and physiological parameters, i.e., peak oxygen uptake ((V)over dotO(2)peak), peak ventilation, peak heart rate, lactate, and rate of perceived exertion, of 7 child (under 15 years: age class U15, 12.7 +/- 1.1 yrs), 10 cadet (U17, 14.9 +/- 0.7 yrs) and 8 senior (+20, 29.3 +/- 9.2 yrs) male judo athletes were assessed during incremental tests of combat duration on an arm crank and a cycle ergometer. Children as well as cadets demonstrated higher upper body relative VO(2)peak than seniors (37.3 +/- 4.9, 39.2 +/- 5.0 and 31.0 +/- 2.1 ml.kg(-1).min(-1), respectively); moreover, upper and lower body relative VO(2)peak decreased with increasing age (r = -0.575, p < 0.003 and r = -0.580, p < 0.002, respectively). Children showed lower blood lactate concentrations after cranking as well as after cycling when compared to seniors (7.8 +/- 2.4 vs. 11.4 +/- 2.1 mmol.l(-1) and 7.9 +/- 3.0 vs. 12.0 +/- 1.9 mmol.l(-1), respectively); furthermore, blood lactate values after cranking increased with age (r = 0.473, p < 0.017). These differences should be considered in planning the training for judo athletes of different age classes.
Resumo:
Strength of leg peference and interlateral asymmetry in kinematics of kicking a ball for power were assessed in 6- to 10-year-old right-footed soccer player children. Leg preference was evaluated separately for three task categories: balance stabilization, soccer related mobilization, and general mobilization. The results showed that while both categories of mobilization tasks were featured by a consistent preference for the right leg, in stabilization tasks we observed lower scores and greater interindividual variability of leg preference. No effect of age was detected on leg preference. Analysis of peak foot velocity revealed similar increment of performance of the right and left legs from the ages 6-8 to 10 years. This finding supports the notion of stable Magnitude of interlateral asymmetries of performance during motor development. (C) 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 799-806, 2008.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Poor posture control has been associated with an increased risk of falls and mobility disability among older adults. This study was conducted to assess the test-retest reliability and sensitivity to group differences regarding the time-limit (TLimit) of one-leg standing and selected balance parameters obtained with a force platform in older and young adults. A secondary purpose was to assess the relationship between TLimit and these balance parameters. Twenty-eight healthy older adults (age: 69±5years) and thirty young adults (age: 21±4years) participated in this study. Two one-leg stance tasks were performed: (1) three trials of 30s maximum and (2) one TLimit trial. The following balance parameters were computed: center of pressure area, RMS sway amplitude, and mean velocity and mean frequency in both the anterio-posterior and medio-lateral directions. All balance parameters obtained with the force platform as well as the TLimit variable were sensitive to differences in balance performance between older and young adults. The test-retest reliability of these measures was found to be acceptable (ICC: 0.40-0.85), with better ICC scores observed for mean velocity and mean frequency in the older group. Pearson correlations coefficients (r) between balance parameters and TLimit ranged from -0.16 to -0.54. These results add to the current literature that can be used in the development of measurement tools for evaluating balance in older and young adults. © 2013 Elsevier Ltd.
Resumo:
We examined the effect of normobaric hypoxia (3200 m) on maximal oxygen uptake (VO2max) and maximal power output (Pmax) during leg and upper-body exercise to identify functional and structural correlates of the variability in the decrement of VO2max (DeltaVO2max) and of maximal power output (DeltaPmax). Seven well trained male Nordic combined skiers performed incremental exercise tests to exhaustion on a cycle ergometer (leg exercise) and on a custom built doublepoling ergometer for cross-country skiing (upper-body exercise). Tests were carried out in normoxia (560 m) and normobaric hypoxia (3200 m); biopsies were taken from m. deltoideus. DeltaVO2max was not significantly different between leg (-9.1+/-4.9%) and upper-body exercise (-7.9+/-5.8%). By contrast, Pmax was significantly more reduced during leg exercise (-17.3+/-3.3%) than during upper-body exercise (-9.6+/-6.4%, p<0.05). Correlation analysis did not reveal any significant relationship between leg and upper-body exercise neither for DeltaVO2max nor for DeltaPmax. Furthermore, no relationship was observed between individual DeltaVO2max and DeltaPmax. Analysis of structural data of m. deltoideus revealed a significant correlation between capillary density and DeltaPmax (R=-0.80, p=0.03), as well as between volume density of mitochondria and DeltaPmax (R=-0.75, p=0.05). In conclusion, it seems that VO2max and Pmax are differently affected by hypoxia. The ability to tolerate hypoxia is a characteristic of the individual depending in part on the exercise mode. We present evidence that athletes with a high capillarity and a high muscular oxidative capacity are more sensitive to hypoxia.
Resumo:
Frog jumping is an excellent model system for examining the structural basis of interindividual variation in burst locomotor performance. Some possible factors that affect jump performance, such as total body size, hindlimb length, muscle mass, and muscle mechanical and biochemical properties, were analysed at the interindividual (intraspecies) level in the tree frog Hyla multilineata. The aim of this study was to determine which of these physiological and anatomical variables both vary between individuals and are correlated with interindividual variation in jump performance. The model produced via stepwise linear regression analysis of absolute data suggested that 62% of the interindividual variation in maximum jump distance could be explained by a combination of interindividual variation in absolute plantaris muscle mass, total hindlimb muscle mass ( excluding plantaris muscle), and pyruvate kinase activity. When body length effects were removed, multiple regression indicated that the same independent variables explained 43% of the residual interindividual variation in jump distance. This suggests that individuals with relatively large jumping muscles and high pyruvate kinase activity for their body size achieved comparatively large maximal jump distances for their body size.
Resumo:
Tuned liquid column dampers have been proved to be successful in mitigating the dynamic responses of civil infrastructure. There have been some recent applications of this concept on wind turbines and this passive control system can help to mitigate responses of offshore floating platforms and wave devices. The control of dynamic responses of these devices is important for reducing loads on structural elements and facilitating operations and maintenance (O&M) activities. This paper outlines the use of a tuned single liquid column damper for the control of a tension leg platform supported wind turbine. Theoretical studies were carried out and a scaled model was tested in a wave basin to assess the performance of the damper. The tests on the model presented in this paper correspond to a platform with a very low natural frequency for surge, sway and yaw motions. For practical purposes, it was not possible to tune the liquid damper exactly to this frequency. The consequent approach taken and the efficiency of such approach are presented in this paper. Responses to waves of a single frequency are investigated along with responses obtained from wave spectra characterising typical sea states. The extent of control is quantified using peak and root mean squared dynamic responses respectively. The tests present some guidelines and challenges for testing scaled devices in relation to including response control mechanisms. Additionally, the results provide a basis for dictating future research on tuned liquid column damper based control on floating platforms.
Resumo:
High intensity leg cycle ergometry is a widely used method of measuring muscular performance during maximal exercise. Until recently, it was deemed to be a predominantly lower body activity; however, there is now evidence to suggest that the upper body could be making a significant contribution to power output, as demonstrated by the intense electrical activity of the forearm musculature. As high intensity cycle ergometry often is used to measure performance in untrained cyclists it is important they are given at least two familiarisation trials to ensure results are both reliable and reproducible. In addition, diurnal variations exist during a single high intensity bout of exercise. It is likely these daily fluctuations are influenced by a number of biochemical and physiological variables. The purpose of this article is to outline factors that contribute to our interpretation of data following high intensity cycle ergometry.
Resumo:
To examine the effect of long lasting practice on pedal behavior in sport, we compared experienced adult soccer players and nonsoccer players on leg preference in motor tasks requiring general mobilization, soccer related mobilization, and body balance stabilization. We also evaluated performance asymmetry between the right and left legs in static and dynamic unipedal body balance based on center of pressure displacement, and correlated that with kg preference in balance stabilization tasks. Results revealed (a) a distinct leg preference between mobilization and stabilization tasks, which were significantly different between Mayers and nonplayers, (b) similar balance stability between the right and left legs, (c) greater stability of experienced players compared with nonplayers in static and dynamic balance, and (d) absence of a significant kg preference correlation with interlateral balance asymmetry. These results suggest an effect of extensive soccer skill practice on establishing leg preference for specific mobilization tasks and overall balance control.
Resumo:
Artioli, GG, Gualano, B, Franchini, E, Batista, RN, Polacow, VO, and Lancha, AH Jr. Physiological, performance, and nutritional profile of the Brazilian Olympic Wushu (kung-fu) team. J Strength Cond Res 23(1): 20-25, 2009-The purpose of the present study was to determine physiological, nutritional, and performance profiles of elite Olympic Wushu (kung-fu) athletes. Ten men and four women elite athletes took part in the study. They completed the following tests: body composition, nutritional assessment, upper-body Wingate Test, vertical jump, lumbar isometric strength, and flexibility. Blood lactate was determined at rest and after the Wingate Test. Blood lactate was also determined during a training session (combat and Taolu training). We found low body fat (men: 9.5 +/- 6.3%; women: 18.0 +/- 4.8%), high flexibility (sit-and-reach-men: 45.5 +/- 6.1 cm; women: 44.0 +/- 6.3 cm), high leg power (vertical jump-men: 37.7 +/- 8.4 cm; women: 32.3 +/- 1.1 cm), high lumbar isometric strength (men: 159 6 13 cm; women: 94 6 6 cm), moderate arm mean and peak power (Wingate Test-men: 4.1 +/- 0.4 and 5.8 +/- 0.5 W.kg(-1), respectively; women: 2.5 +/- 0.3 and 3.4 +/- 0.3 W.kg(-1), respectively), and elevated blood lactate after the Wingate Test (men: 10.8 +/- 2.0 mmol.L(-1); women: 10.2 +/- 2.0 mmol.L(-1)) and during training (combat: 12.0 +/- 1.8 mmol.L(-1); Taolu: 7.7 +/- 3.3 mmol.L(-1)). Men athletes consume a high-fat, low-carbohydrate diet, whereas women consume a moderate, high-carbohydrate diet. Energy consumption was markedly variable. In conclusion, Olympic Wushu seems to be a highly anaerobic-dependent combat sport. Low body fat, high flexibility, leg anaerobic power, isometric strength, and moderately high arm anaerobic power seem to be important for successful competitive performance.
Resumo:
The mechanisms involved in the control of growth in chickens are too complex to be explained only under univariate analysis because all related traits are biologically correlated. Therefore, we evaluated broiler chicken performance under a multivariate approach, using the canonical discriminant analysis. A total of 1920 chicks from eight treatments, defined as the combination of four broiler chicken strains (Arbor Acres, AgRoss 308, Cobb 500 and RX) from both sexes, were housed in 48 pens. Average feed intake, average live weight, feed conversion and carcass, breast and leg weights were obtained for days 1 to 42. Canonical discriminant analysis was implemented by SAS((R)) CANDISC procedure and differences between treatments were obtained by the F-test (P < 0.05) over the squared Mahalanobis` distances. Multivariate performance from all treatments could be easily visualised because one graph was obtained from two first canonical variables, which explained 96.49% of total variation, using a SAS((R)) CONELIP macro. A clear distinction between sexes was found, where males were better than females. Also between strains, Arbor Acres, AgRoss 308 and Cobb 500 (commercial) were better than RX (experimental), Evaluation of broiler chicken performance was facilitated by the fact that the six original traits were reduced to only two canonical variables. Average live weight and carcass weight (first canonical variable) were the most important traits to discriminate treatments. The contrast between average feed intake and average live weight plus feed conversion (second canonical variable) were used to classify them. We suggest analysing performance data sets using canonical discriminant analysis.
Resumo:
Mature pregnant crossbred ewes (n = 90) were used in a randomized complete block design experiment and were assigned to 1 of 3 winter-feeding systems differing in primary feed source: haylage (HL), limit-fed corn (CN), or limit-fed dried distillers grains (DDGS). Effects of these winter-feeding strategies on postweaning progeny performance were determined. Lamb progeny (n = 96) were weaned at 61 +/- 4 d of age and fed a common high-concentrate diet. Lambs were assigned to feedlot pen (n = 18) based on dam mid-gestation pen. Growth rate, DMI, and ADG were determined for the first 40 d of the finishing period. At 96 +/- 4 d of age, 1 wether lamb was randomly selected from each pen (n = 18) for a glucose tolerance test. The experiment was terminated, and lambs were slaughtered individually when they were determined to have achieved 0.6-cm 12th-rib fat thickness. After a 24-h chill, carcass data were collected and a 2.54-cm chop was removed from each lamb from the LM posterior to the 12th rib for ether extract analysis. Additional carcass measurements of bone, muscle, and fat from the shoulder, rack, loin, and leg were collected on 35 carcasses. At weaning, lamb BW was not different among treatments, whereas final BW tended to be greater (P = 0.09) for lambs from ewes fed DDGS and CN during gestation than from those fed HL. Overall lamb growth rate from birth to slaughter was not different among treatments. Lambs from ewes fed DDGS vs. CN or HL tended to have a greater initial insulin response (P = 0.09). Dressing percent was less (P = 0.04) in lambs from ewes fed DDGS, but no difference (P = 0.16) was detected in HCW among treatments. As expected, 12th rib fat thickness was similar among treatments, whereas LM area was largest to smallest (P = 0.05) in lambs from ewes fed CN, HL, and DDGS, respectively. Proportion of internal fat tended to be greatest to smallest (P = 0.06) in lambs from ewes fed DDGS, CN, and HL, respectively. Calculated boneless trimmed retail cuts percentage was less (P = 0.04) in lambs from ewes fed DDGS than CN or HL. Loin muscle weight as a percentage of wholesale cut tended (P = 0.10) to be greater in lambs from ewes fed CN and HL than DDGS, whereas other muscle, bone, and fat weights and proportions were similar (P > 0.24) among treatments. Prepartum diet during mid to late gestation of ewes altered postnatal fat and muscle deposition and may be associated with alterations in insulin sensitivity of progeny.
Resumo:
Abad, CCC, Prado, ML, Ugrinowitsch, C, Tricoli, V, and Barroso, R. Combination of general and specific warm-ups improves leg-press one repetition maximum compared with specific warm-up in trained individuals. J Strength Cond Res 25(8): 2242-2245, 2011-Accurate assessment of muscular strength is critical for exercise prescription and functional evaluation. The warm-up protocol may affect the precision of the 1 repetition maximum (1RM) test. Testing guidelines recommend performing both general and specific warm-ups before strength tests. The general warm-up intends to raise muscle temperature, whereas the specific warm-up aims to increase neuromuscular activation. Although there is scientific evidence for performing the specific warm-up, the effects of general warm-up on strength tests are still unclear. The purpose of this study was to investigate whether the combination of a general with a specific warm-up (G + SWU) protocol would improve leg press 1RM values compared with a specific warm-up (SWU) protocol. Thirteen participants were tested for leg-press 1RM under 2 warm-up conditions. In the first condition, participants performed the SWU only, which was composed of 1 set of 8 repetitions at approximately 50% of the estimated 1RM followed by another set of 3 repetitions at 70% of the estimated 1RM. In the second condition (G + SWU), participants performed the 1RM test after a 20-minute general warm-up on a stationary bicycle at 60% of HRmax and the same specific warm-up as in the SWU. Values of 1RM in SWU and in G + SWU were compared by a paired t-test, and significance level was set at p <= 0.05. Strength values were on average 8.4% (p = 0.002) higher in the G + SWU compared with the SWU. These results suggest that the G + SWU induced temperature-dependent neuromuscular adjustments that increased muscle force production capacity. Therefore, these results support the recommendations of the testing guidelines to perform a moderate intensity general warm-up in addition to the specific warm-up before maximum strength assessments.
Resumo:
This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.