999 resultados para LB FILMS
Resumo:
The LB films and spin-coated films of tetra-neopentoxy phthalocyanine zinc (TNPPcZn) were prepared and annealed at different temperatures. Their refractive index (n) and extinction coefficient (k) were measured by p-polarized reflectance. The similar value of n and k, as well as similar changing tendency of it and k at varied annealing temperatures, was found between LB films and spin-coated films. In addition, the absorption curves of TNPPcZn LB films and spin-coated films in visible range at different annealing temperature were investigated. The results indicate that the changing tendency of the extinction coefficient of two kinds of TNPPcZn films obtained from two methods mentioned above were coincident. When the annealing temperature increased to 150 degrees C, the monomers of TNPPcZn films transformed to aggregates, n(f) and k(f) of the films increased. Further, n(f) and k(f) decreased as aggregates changed back to monomers again at the annealing temperature of 300 degrees C. The experimental results coincide well with the theoretical analysis. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Several ultrathin luminescent Langmuir-Blodgett (LB) films have been prepared by using the subphase containing the rare earth ions (Eu3+, Tb3-). The effect of the rare earth ions on the monolayer of 2-n-heptadecanoylbenzoic acid (HBA) was investigated. IR and UV spectra showed the rare earth ions were bound to the carboxylic acid head groups and the coordination took place between the polar head group and the rare earth ions. The layer structure of the LB films was demonstrated by low-angle X-ray diffraction. UV absorbance intensity increases linearly with the number of LB films layers, which indicate that the LB films are homogeneously deposited. The LB films can give off strong fluorescence. and the signal can be detected from a single layer. The characteristic luminescence behaviors of LB films have been discussed compared with those of the complexes.
Resumo:
In this work, the LB films based on heteropolytungstate of Dy and Sm have been prepared. The X-ray diffraction shows the LB films have a highly ordered lamella structure. The luminescence characteristics of the LB films were studied. The charge transfer bands of LB films are in higher energies than those of the corresponding solids. It is noticed that the yellow to blue intensity ratio (Y:B) of Dy3+ in the LB films is different from that of the solid. The differences in the spectra show that the Dy3+ site symmetry in LB film was changed due to the interaction between the surfactant and the polyanions. The differences could also be found in the luminescence spectra of the LB films of Sm complex.
Resumo:
LB films of 4-hexadecyloxybenzoic-terbium by using the subphase containing Tb3+ were prepared. The monolayer behavior of 4-hexadecyloxybenzoic acid (HOBA) on the subphase containing rare earth ions was studied. IR and UV spectra show that the rare earth ions were bound to carboxylic acid head groups and the coordination took place between the polar head group and the rare earth ions. The luminescence spectra show that the LB films have the fine luminescence properties, and the LB films emit strong luminescence under UV light irradiation.
Resumo:
The europium-substituted heteropolytungstate K13Eu(SiW11O39)(2) was successfully assembled into two lipids by LB technique for the first time. X-ray diffraction has shown a well defined lamellar for the LB films. The LB films have been characterized by fluorescence spectra and the characteristic luminescence behaviors were discussed. The ligand-metal charge transfer band could be observed in the spectra of the LB films, which could not be found in that of heteropolytungstate solid. The results of fluorescence spectra indicate the energy could be effectively transferred from ligands to the Eu3+ ions in the LB films and the luminescence efficiency was increased greatly. The influences of various lipids on the luminescence of polyoxometalates were investigated. The various interactions between monolayer and polyanions have different effect on the luminescence properties of europium-substituted heteropolytungstate.
Resumo:
Octadecylamine was derivatized with dansyl chloride (5-dimethylaminonaphthalene-1-sulfonyl chloride) In order to simplify and understand the LB films of fluorescent probe labeling proteins. its monolayer and multilayers in the absence and presence of stearic acid were deposited by LB technique. Fluorescence spectra and lifetimes of the fluorescent products were studied to elucidate the microenvironment of molecules in the LB films.
Resumo:
Copper phthalocyanine-Fe2O3 nanoparticles alternating thin films were fabricated by Langmuir-Blodgett technique. Molecular orientation of [4-(4'-benzyloxy phenyl sulfonyl)phenoxy]-tris-4-(2,4-di-t-phenoxy) phthalocyanine copper (II) in its alternating LB films, deposited at different conditions,was studied by polarized UV-Vis spectra. The tilt extent of the copper phthalocyanine molecule omits LB films increases with the surface pressure of the subphase increasing on the same subphase, or with Fe2O3 concentration decreasing at the same pressure. The orientation of the copper phthalocyanine derivative is important for the gas-sensing properties. The bigger the tilt extent of the phthalocyanine molecule is, the greater the sensitivity of the film is.
Resumo:
SnO2 nanoparticles were found to self-pack at the air-hydrosol interface and form a nanoparticulate film. The self-packed films were observed under a Brewster angle microscope, and investigated by recording the time evolution of surface pressure and pi-A isotherms. The results show that SnO2 nanoparticles take 3 h to form a complete film at the air-hydrosol interface. Composite monolayers of SnO2 and arachidic acid were obtained by spreading arachidic acid onto a fresh hydrosol surface. Composite Y-type LB films were transferred from the air-hydrosol interface onto substrates, and characterized by FTIR, UV-vis, X-ray diffraction spectroscopy and TEM techniques. The results show that the composite films have good structure, with SnO2 nanoparticles uniformly and compactly distributed in the arachidate matrix. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Copper phthalocyanine doped polymethacrylate Langmuir-Blodgett films were transferred to align a nematic liquid crystal 5CB, It is found that the pre-tilt angle of the liquid crystal can be controlled with the variation of the doped copper phthalocyanine molecular ratio and is correlated with the dichroic ratio of the aligning layer. The polarity of the aligning layer is regarded as the most likely underlying factor that causes the different LC alignment configurations. (C) 1997 Elsevier Science B.V.
Resumo:
The hydrosol of SnO2 nanoparticles (NP) have been prepared by colloid chemistry method. The composite LB monolayer and multilayer of SnO2 NP-AA have been obtained by LB technique at the gas-liquid interface of the hydrosol subphase. The structures of the monolayer and multilayer were characterized by IR, UV-Vis, small angle X-ray diffraction spectroscopy and TEM technique, The results indicate that the coverage of SnO2 NP at the composite monolayer's surface is high and the sites of SnO2 NP are similar. The multilayer has good periodic structure.
Resumo:
Infrared spectra of alternating LB films of octadecyl-TCNQ/CuPc are studied. Charge-transfer complexes are formed in LB films and conductance increases about three orders than that of pure CuPc LB films.
Resumo:
A series of liquid crystalline copolymers, poly{2-hydroxyethyl methacrylate}-co-{6-[4-(S-2-methyl-1-butyloxycarbonylphenylazo)phenoxy]hexyl methacrylate} with an azobenzene moiety as photoreactive mesogenic unit, was prepared and investigated by using DSC, polarized optical microscopy and X-ray diffraction. The results show that these polymers exhibit smectic phases. Z-type Langmuir-Blodgett films of these copolymers were successfully deposited onto calcium fluoride and quartz. Reversible homeotropic and planar liquid crystal alignments were induced by using the photochromism of the LB films of one of the copolymers containing 20.6 mol % of the azo unit.
Resumo:
Monolayers of liquid-crystalline polyacrylate containing para-nitro azobenzene (HP6) on the water subphase were characterized by the surface pressure (pi)-area per monomer unit (A) isotherm and were successfully transferred onto glass substrates by the vertical lifting method. The monolayer Langmuis-Blodgett (LB) films transferred at different surface pressures were studied by electron diffraction. The thickness of the monolayer LB film was measured by the transmission electron microscopy folding method. The results of the electron diffraction of the monolayer LB films of HP6 showed that a two-dimensional arrangement exists in the transferred films. According to the results of the pi-A isotherm, electron diffraction and the measured thickness of the monolayer LB film, a molecular arrangement model of HP6 on the water subphase was proposed. The ordered monolayer formation of HP6 showed it to be promising as a second-order non-linear optical material.
Resumo:
The molecular architecture of azopolymers may be controlled via chemical synthesis and with selection of a suitable film-forming method, which is important for improving their properties for practical uses. Here we address the main challenge of combining the photoinduced birefringence features of azopolymers with the higher thermal and mechanical stabilities of poly(methyl methacrylate) (PMMA) using Atom Transfer Radical Polymerization (ATRP) to synthesize diblock- and triblock-copolymers of an azomonomer and the monomer methyl methacrylate. Langmuir-Blodgett (LB) films made with the copolymers mixed with cadmium stearate displayed essentially the same optically induced birefringence characteristics, in terms of maximum and residual birefringence and time for writing, as the mixed LB films with the homopolymer poly[4-(N-ethyl-N-(2-methacryloxyethyl))amino-2`-chloro-4`-nitroazobenzene] (HPDR13), also synthesized via ATRP. In fact, the controlled architecture of HPDR13 chains led to Langmuir films that could be more closely packed and reach higher collapse pressures than the corresponding films obtained with HPDR13-conv synthesized via conventional radicalar polymerization. This allowed LB films to be fabricated from neat HPDR13, which was not possible with HPDR13-conv. The enhanced organization in the LB films produced with controlled azopolymer chains, however, led to a smaller free volume available for isomerization of the azochromophores, thus yielding a lower photoinduced birefringence than in the HPDR13-conv films. The combination of ATRP synthesis and LB technology is then promising to obtain optical storage in films with improved thermal and mechanical processabilities, though a further degree of control must be sought to exploit film organization while maintaining the necessary free volume in the films. (C) 2008 Elsevier Ltd. All rights reserved.