990 resultados para LANTHANUM OXIDES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface acidity and basicity of binary oxides of Zr with Ce and La are determined using a series of Hammet indicators and Ho,,max values are reported. The generation of new acid sites habe been ascribed to the charge imbalance of M1-O-M2 bonds, where M1 and M2 are metal atoms. Both Bronsted and Lewis acid sites contribute to the acidity of the oxides

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we reported a new method in which molybdenum heteropolyacid salt was selected to mix with lanthanum oxide and bentonite, respectively, and the dipping method was used to prepare the new composites of heteropolyacid salt–lanthanum oxide, heteropolyacid salt–bentonite, and heteropolyacid salt–lanthanum oxide–bentonite. We observed that the composites have a better removal effect for phosphorus by control of the ratio and calcination temperature. The effect of quantity, adsorption time, phosphorus wastewater concentration, and pH value of composites on phosphorus adsorption was studied. We also found that the removal rate of phosphorus by the composite of heteropolyacid salt–lanthanum oxides increases up to 99.1% under the condition of 1:1 mass ratio and 500°C of calcination temperature. IR and XRD studies suggest that molybdenum heteropolyacid salt has been loaded to lanthanum oxide carrier successfully and heteropolyacid salt keeps the original Keggin structure. Heteropolyacid salt–lanthanum oxide has a good adsorption effect on phosphorus under the condition of 0.15 g of the composite, 90 min of adsorption time, phosphorus concentration of 50 mg L−1, and pH value of 3. The adsorption of phosphorus corresponds with the Langmuir isotherm model and Lagergren first-order kinetics equation. Therefore, the composite has excellent absorption ability and was competent in removing phosphorus with a low concentration from aqueous solution. It could be a great potential adsorbent for the removal of phosphorus in lakes, rivers, and reservoirs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal and spectroscopic studies on solid trivalent lanthanides and yttrium(III) α-hydroxyisobutyrates, Ln(C4H7O 3)3·nH2O were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA), elemental analysis, X-ray diffractometry, complexometry, experimental and theoretical infrared spectroscopy and TG-DSC coupled to FTIR. The dehydration of lanthanum to neodymium and terbium to thulium and yttrium compounds occurs in a single step while for samarium, europium and gadolinium ones it occurs in three consecutives steps. Ytterbium and lutetium compounds were obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occursin two consecutives steps, except lanthanum (five steps) and cerium (single step), with formation of the respective oxides CeO2, Pr6O 11, Tb4O7 and Ln2O3 (Ln = La, Nd to Lu and Y), as final residue. The resultsalso provided information concerning the composition, thermal behavior, crystallinity and gaseous products evolved during the thermal decomposition. The theoretical and experimental spectroscopic data suggested the possible modes of coordination of the ligand with the lanthanides.© 2013 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron transport and magnetic properties of several compositions of the La1-xSx-zYzMnO3 system have been investigated in order to explore the effect of yttrium substitution on the magnetoresistance and related properties of these manganates. Yttrium substitution lowers the T-c and the insulator-metal transition temperature, while increasing the peak resistivity. A comparison of the properties of La1-xSrx-zYzMnO3 with the corresponding La1-xCax-zYzMnO3 compositions shows that the observed properties can be related to the average size of the A-site cations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electron donating properties of La2O3 activated at 300, 500 and 800·C and its mixed oxides with alumina are reported from the studies on adsorption of electron acceptors of varying electron affinity on La203. The electron acceptors with their electron affinity values given in parenthesis are: 7,7,8,8-tetracyanoquinodimethane (2.84 eV), 2,3,5,6-tetrachloro-I,4-benzoquinone (2.40 eV) and p-dinitrobenzene(l.77eV). The basicity of the oxide has been determined by titration with n-butylamine and Ho.max values are reported. The limit of electron transfer from the oxide to the electron acceptor is between 2.40 and 1.77 eV. It is observed that La203 promotes the surface electron properties of alumina without changing its limit of electron transfer.