942 resultados para L-ascorbic Acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-Serine-L-ascorbic acid, C3HTNOa. C6HsO6, a 1:1 complex between the amino acid serine and the vitamin ascorbic acid, crystallizes in the orthorhombic space group P2~2~2~ with four formula units in a cell of dimensions a = 5.335(3), b = 8.769(2), c = 25.782 (5) A. The structure was solved by direct methods and refined by full-matrix least squares to an R of 0.036 for 951 observed reflections. Both molecules are neutral in the structure. The conformation of the serine molecule is different from that observed in the crystal structures of L-serine, DL-serine and L-serine monohydrate. The enediol group in the ascorbic acid molecule is planar, whereas significant departures from planarity are observed in the lactone group. The conformation of this molecule is similar to that observed in arginine ascorbate. The unlike molecules aggregate into separate columns in the crystal structure. The columns are held together by hydrogen bonds. Among these, a pair of hydrogen bonds between the enediol group of ascorbic acid and the carboxylate group of serine provides a possible model for a specific interaction between ascorbic acid and a carboxylate ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ microscopic FTIR spectroelectrochemistry behavior of L-ascorbic acid (H(2)A) in polymer electrolyte is reported for the first time. H(2)A undergoes a two-step oxidation, The oxidation waves shift towards more anodic potential values when the scan rate increases. The peak currents of the oxidation waves are proportional to the square roots of scan rate up to 100 mV/s, The in situ infrared spectra suggest that the product of the oxidation be dehydroascorbic acid, which may exist as a dimer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study tested the effect of Sigma antioxidant supplement®, α-tocopherol (vitamin E) and L-ascorbic acid (vitamin C) in the culture medium of bovine embryos. In experiment 1, in vitro produced bovine zygotes were cultured in Human Tubal Fluid (HTF): Eagle’s Basic Medium (BME) with: Group 1 – 50 µm vitamin C; Group 2 – 200 µm vitamin E; Group 3 – 25 µm vitamin C and 100 µm vitamin E; Group 4 – 1 µl/ml Sigma antioxidant supplement®; and the Control group – HTF:BME only. In experiment 2, embryos were cultured in high or low oxygen tension with HTF:BME + Sigma antioxidant supplement® or in HTF:BME alone (Control). The data were analyzed using ANOVA followed by Tukey’s test. The results of experiment 1 showed a negative effect (P < 0.05) of vitamin E on blastocyst production in Group 2 (19.7 ± 0.1%). This effect was reduced in Group 3 by the addition of vitamin C (26.1 ± 0.2%). The use of vitamin C alone (34.9 ± 0.3%) or the Sigma antioxidant supplement® (33.3 ± 0.7%) did not increase (P > 0.05) the number of blastocysts produced compared with the control group (30.1 ± 0.5%). During experiment 2, there was no effect (P > 0.05) from the culture medium or the O2 concentrations used, indicating that the reduction of the O2 concentration did not improve blastocyst production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin C (L-ascorbic acid) is an essential micronutrient that serves as an antioxidant and as a cofactor in many enzymatic reactions. Intestinal absorption and renal reabsorption of the vitamin is mediated by the epithelial apical L-ascorbic acid cotransporter SVCT1 (SLC23A1). We explored the molecular mechanisms of SVCT1-mediated L-ascorbic acid transport using radiotracer and voltage-clamp techniques in RNA-injected Xenopus oocytes. L-ascorbic acid transport was saturable (K(0.5) approximately 70 microM), temperature dependent (Q(10) approximately 5), and energized by the Na(+) electrochemical potential gradient. We obtained a Na(+)-L-ascorbic acid coupling ratio of 2:1 from simultaneous measurement of currents and fluxes. L-ascorbic acid and Na(+) saturation kinetics as a function of cosubstrate concentrations revealed a simultaneous transport mechanism in which binding is ordered Na(+), L-ascorbic acid, Na(+). In the absence of L-ascorbic acid, SVCT1 mediated pre-steady-state currents that decayed with time constants 3-15 ms. Transients were described by single Boltzmann distributions. At 100 mM Na(+), maximal charge translocation (Q(max)) was approximately 25 nC, around a midpoint (V(0.5)) at -9 mV, and with apparent valence approximately -1. Q(max) was conserved upon progressive removal of Na(+), whereas V(0.5) shifted to more hyperpolarized potentials. Model simulation predicted that the pre-steady-state current predominantly results from an ion-well effect on binding of the first Na(+) partway within the membrane electric field. We present a transport model for SVCT1 that will provide a framework for investigating the impact of specific mutations and polymorphisms in SLC23A1 and help us better understand the contribution of SVCT1 to vitamin C metabolism in health and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new chemiluminescence(CL) system for the determination of ascorbic acid has been established. By the fast reduction reaction between chromium(VI) and ascorbic acid, chromium(M was generated to react with luminol and hydrogen peroxide in alkaline aqueous solution and hydrogen peroxide to produce CL. The CL emission intensity was correlated with ascorbic acid concentration in the range 8.0 x 10(-9) to 1.6 x 10(-4) mol/L, and the detection limit was 8.0 x 10(-9) mol/L ascorbic acid. The relative standard deviation (n = 11) for 1.0 x 10(-6) mol/L ascorbic acid is 0.9%. The method has been applied to the determination of ascorbic acid in vitamin C tablets with satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

chemiluminescence suppression method for the determination of ascorbic acid based on Luminol-KIO4-H2O2-ascorbic acid system was established. The linear range for ascorbic acid is 1.0 x 10(-7) similar to 1.0 x 10(-5) mol/L and the detection limit is 6.0 x 10(-8) mol/L. The relative standard deviation (n = 11) is 1.0% for 8.0 x 10(-7) mol/L ascorbic acid. The method has been used to determine the content of ascorbic acid in tablets and injections with satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A kind of mimetic biomembrane-cast lipid film was made onto a glassy carbon electrode. Dopamine can be incorporated into the film. The oxidation of 2.0 x 10(-3) mol/L ascorbic acid with dopamine in the film was investigated. The oxidation overpotential of ascorbic acid was reduced by about 260 mV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study provides a versatile validated method to determine the total vitamin C content, as the sum of the contents of L-ascorbic acid (L-AA) and dehydroascorbic acid (DHAA), in several fruits and vegetables and its degradability with storage time. Seven horticultural crops from two different origins were analyzed using an ultrahigh-performance liquid chromatographic–photodiode array (UHPLC-PDA) system, equipped with a new trifunctional high strength silica (100% silica particle) analytical column (100 mm×2.1 mm, 1.7 μm particle size) using 0.1% (v/v) formic acid as mobile phase, in isocratic mode. This new stationary phase, specially designed for polar compounds, overcomes the problems normally encountered in HPLC and is suitable for the analysis of large batches of samples without L-AA degradation. In addition, it proves to be an excellent alternative to conventional C18 columns for the determination of L-AA in fruits and vegetables. The method was fully validated in terms of linearity, detection (LOD) and quantification (LOQ) limits, accuracy, and inter/intraday precision. Validation experiments revealed very good recovery rate of 96.6±4.4% for L-AA and 103.1±4.8 % for total vitamin C, good linearity with r2-values >0.999 within the established concentration range, excellent repeatability (0.5%), and reproducibility (1.6%) values. The LOD of the method was 22 ng/mL whereas the LOQ was 67 ng/mL. It was possible to demonstrate that L-AA and DHAA concentrations in the different horticulture products varied oppositely with time of storage not always affecting the total amount of vitamin C during shelf-life. Locally produced fruits have higher concentrations of vitamin C, compared with imported ones, but vegetables showed the opposite trend. Moreover, this UHPLC-PDA methodology proves to be an improved, simple, and fast approach for determining the total content of vitamin C in various food commodities, with high sensitivity, selectivity, and resolving power within 3 min of run analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desenvolveu-se um biossensor para ácido L-ascórbico empregando ascorbato oxidase. A enzima foi extraída do mesocarpo de pepino com solução tampão fosfato 0,05 mol L-1, pH 5,8 contendo NaCl 0,5 mol L-1. Após diálise versus solução tampão fosfato 0,05 mol L-1, pH 5,8 a enzima foi imobilizada em rede de nylon através de ligação covalente com glutaraldeído. A membrana foi acoplada em eletrodo de O2 e a reação monitorada pelo consumo de oxigênio a -600 mV em análise em fluxo (solução tampão fosfato 0,05 mol L-1, pH 5,8 como carregador e vazão 0,5 mL min-1). A curva analítica apresentou-se linear entre 1,2x10-4 a 1,0x10-3 mol L-1. O tempo de vida do biossensor foi de 500 análises. Amostras de medicamentos foram analisadas com a metodologia proposta e os resultados comparados com os obtidos com HPLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin C (l-ascorbic acid; AsA) acts as a potent antioxidant and cellular reductant in plants and animals. AsA has long been known to have many critical physiological roles in plants, yet its biosynthesis is only currently being defined. A pathway for AsA biosynthesis that features GDP-mannose and l-galactose has recently been proposed for plants. We have isolated a collection of AsA-deficient mutants of Arabidopsis thaliana that are valuable tools for testing of an AsA biosynthetic pathway. The best-characterized of these mutants (vtc1) contains ≈25% of wild-type AsA and is defective in AsA biosynthesis. By using a combination of biochemical, molecular, and genetic techniques, we have demonstrated that the VTC1 locus encodes a GDP-mannose pyrophosphorylase (mannose-1-P guanyltransferase). This enzyme provides GDP-mannose, which is used for cell wall carbohydrate biosynthesis and protein glycosylation as well as for AsA biosynthesis. In addition to genetically defining the first locus involved in AsA biosynthesis, this work highlights the power of using traditional mutagenesis techniques coupled with the Arabidopsis Genome Initiative to rapidly clone physiologically important genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-ascorbic acid (vitamin C) is a powerful reducing agent found in millimolar concentrations in plants, and is proposed to play an important role in scavenging free radicals in plants and animals. However, surprisingly little is known about the role of this antioxidant in plant environmental stress adaptation or ascorbate biosynthesis. We report the isolation of soz1, a semi-dominant ozone-sensitive mutant that accumulates only 30% of the normal ascorbate concentration. The results of genetic approaches and feeding studies show that the ascorbate concentration affects foliar resistance to the oxidizing gas ozone. Consistent with the proposed role for ascorbate in reactive oxygen species detoxification, lipid peroxides are elevated in soz1, but not in wild type following ozone fumigation. We show that the soz1 mutant is hypersensitive to both sulfur dioxide and ultraviolet B irradiation, thus implicating ascorbate in defense against varied environmental stresses. In addition to defining the first ascorbate deficient mutant in plants, these results indicate that screening for ozone-sensitive mutants is a powerful method for identifying physiologically important antioxidant mechanisms and signal transduction pathways. Analysis of soz1 should lead to more information about the physiological roles and metabolism of ascorbate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic islets from young normal and scorbutic male guinea pigs were examined for their ability to release insulin when stimulated with elevated D-glucose. Islets from normal guinea pigs released insulin in a D-glucose-dependent manner showing a rapid initial secretion phase and three secondary secretion waves during a 120-min period. Islets from scorbutic guinea pigs failed to release insulin during the immediate period, and only delayed and decreased responses were observed over the 40-60 min after D-glucose elevation. Insulin release from scorbutic islets was greatly elevated if 5 mM L-ascorbic acid 2-phosphate was supplemented in the perifusion medium during the last 60 min of perifusion. When 5 mM L-ascorbic acid 2-phosphate was added to the perifusion medium concurrently with elevation of medium D-glucose, islets from scorbutic guinea pigs released insulin as rapidly as control guinea pig islets and to a somewhat greater extent. L-Ascorbic acid 2-phosphate without elevated D-glucose had no effect on insulin release by islets from normal or scorbutic guinea pigs. The pancreas from scorbutic guinea pigs contained 2.4 times more insulin than that from control guinea pigs, suggesting that the decreased insulin release from the scorbutic islets was not due to decreased insulin synthesis but due to abnormal insulin secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The content of ascorbic acid was assayed in acerolas harvested in three phases of maturation: green-yellow fruits (I); light red (II) and wine-coloured (III). Phase I and Phase II fruit were packed in aluminium sheets and stoppered flasks and stored in freezer (-10o.C) and in refrigerator (8o.C). Samples of 8 fruits from each experimental condiction were analysed for ascorbic acid determination by 2-chlorophenol indophenol discolouration method. The averages of 1.393,5 mg./100g. for Phase I sample, 1024,9 for Phase II and 756,5 for Phase III fruits, showed a statistically significative linear decreasing of the ascorbic acid content related with the maturation extent Phase I samples stored in freezing showed statitically significative decreasing of that vitamin at 408 hours of storage in both: aluminium sheet and stoppered flask package; in chilling temperature there was significative reduction of ascorbic acid content after 240 and 312 hours, respectively, for fruits packed in aluminium sheet and stopped flasks. Phase Il samples showed significative lost at 72 hours of storage when maintained in freezing temperature either, in aluminium sheet or in stoppered flasks: When stored in chilling temperature showed progressive lost of ascorbic acid in all measuring periods in every package. After 144 hours suffered deterioration suggested by colour changes.