7 resultados para Kylmämuovattu suorakaideputkipalkki
Resumo:
Työssä on tutkittu kylmämuovatun suorakaideputkipalkin väsymistä metsätyökoneen puomirakenteen osana. Kylmämuovatun putkipalkin sisäpintaan syntyy käytössä puristavan ulkoisen kuormituksen vaikutuksesta putkipalkin pituussuunnassa sekä seinämän läpi kasvavia säröjä. Työn tarkoituksena on ollut selvittää rakenteen väsymiskestoikä sekä säröytymisen aiheuttavat tekijät. Työssä on verrattu kestoikälaskentaan ja särönkasvuun sovellettujen murtumismekaniikan ja elementtimenetelmän tuloksia laboratoriokokeista saatuihin tuloksiin. Toisiaan tukevien tulosten perusteella kylmämuovausprosessissa syntyneiden jäännösjännitysten osuus särön ydintymisessä, kasvussa ja sen käyttäytymisessä on ulkoisen kuorman paikallisen vaikutuksen lisänä erittäin merkittävä. Putkipalkin väsyminen onkin jäännösjännityksistä riippuva särönkasvuilmiö.
Resumo:
Työssä on tutkittu kylmämuovattujen nelikulmaisten putkipalkkien K-liitosten mallinnusta epälineaarisella elementtimenetelmällä. Työn tärkeimpänä tavoitteena on ollut kehittää putkipalkin osien materiaalimalleja siten, että liitosten kestävyyttä voidaan tutkia laboratoriokokeiden ohella luotettavasti myös elementtimenetelmällä. Toisena tavoitteena on ollut tutkia, voidaanko putkipalkkien liitosten mitoitusohjeita turvallisesti soveltaa kylmämuovatuille putkipalkeille, joissa valmistusprosessi aiheuttaa muutoksia materiaaliominaisuuksiin, erityisesti muodonmuutoskykyyn. Työssä tehtyjen laboratoriokokeiden ja elementtianalyysien perusteella elementti-menetelmä on käyttökelpoinen työkalu putkipalkkiliitosten staattista kestävyyttä määritettäessä, kun materiaalimallit on määritetty oikein. Erityisesti liitoksen käyttö-rajatilan mukaisen kestävyyden laskennassa elementtimenetelmällä saadaan hyvin laboratoriokokeita vastaavia tuloksia. Tehdyt laboratoriokokeet osoittavat myös, että Eurocode 3:n mukaisia putkipalkkien liitosten mitoitusohjeita voi turvallisesti käyttää kylmämuovatuille putkipalkeille.
Resumo:
Työssä on tutkittu elementtimenetelmän avulla kylmämuovattujen nelikulmaisten putkipalkkien materiaalimallin kehittämistä ja putkipalkkien X-liitosten jäykkyyden ja äärikestävyyden määrittämistä. Työn tavoitteena on tutkia kylmämuovauksen vaikutuksia putkipalkkiprofiilin materiaaliominaisuuksiin materiaalikokeiden ja elementtianalyysien avulla sekä kehittää putkipalkille anisotrooppista materiaalimallia. Työssä määritettyjä materiaalimalleja on sovellettu X-liitosten elementtimalleihin, joiden käyttäytymistä on verrattu äärikestävyyskokeiden tuloksiin. Tutkimuksen perusteella Eurocode 3:n mitoitusohjeita voidaan turvallisesti soveltaa kylmämuovattujen putkipalkkien X-liitosten laskennassa. Työssä tehtyjen materiaalikokeiden ja elementtianalyysien perusteella materiaalin anisotrooppisuuden vaikutus liitoksen kestävyyteen on vähäistä, ja putkipalkin pituussuuntaista materiaalimallia voidaan soveltaa myös kehäsuuntaisille materiaaliominaisuuksille. Materiaalikokeiden simulointi osoittaa, että elementtimenetelmää voidaan käyttää materiaalimallin määrittämisen apuvälineenä.
Resumo:
Tämän tutkimuksen tavoite oli kaksijakoinen. Ensimmäisenä tavoitteena oli profiililiiketoiminnan tehostaminen tuoteportfoliota kehittämällä. Toisena ta-voitteena oli etsiä kannattavimpia asiakassegmenttejä. Työn pääajurina nähtiin kilpailukyky, keskeistä oli ymmärtää mistä kilpailukyky syntyy ja mikä on case-organisaation asema markkinoilla. Laajemmin tavoitteena oli päästä eroon teräsmarkkinoiden syklisyydestä ja pelkästään hintoihin perustuvasta liiketoiminnasta. Tutkimuksessa etsittiin case-organisaation ja kilpailijoiden vahvuuksia ja heikkouksia. Kilpailijoiden asema markkinoilla sekä uusien asiakassegmenttien kiinnostavuus selvitettiin kyselytutkimuksen sekä haastattelujen avulla. Kyselytutkimus toteutettiin avoimilla kysymyksillä varustetulla kyselylomakkeella. Vahvuuksien ja heikkouksien tunnistamisen lisäksi oli tärkeää ymmärtää mitä tekijöitä case-organisaation tulee hankkia tulevaisuuden kilpailukyvyn ylläpitämiseksi. Tutkimuksessa tultiin johtopäätökseen, että paras keino vastata markkinoilla vallitsevaa kilpailuun on keskittyä tuoteportfoliossa avoprofiileihin, joiden seinämäpaksuus on yli 8 mm. Lisäksi heräsi tarve pohtia uuden järeän profilointilinjan hankintaa tulevaisuuden kilpailukyvyn ylläpitämiseksi. Potentiaalisimmiksi uusiksi asiakassegmenteiksi nähtiin nosto- ja siirtovälineteollisuus, infrastruktuuri- ja rakennusteollisuus sekä energiateollisuus. Työssä todettiin myös, että tulevaisuuden kilpailukyvyn ylläpitämiseksi on tuotetarjontaa monipuolistettava lisäämällä oheispalveluita, kuten asiakasvarastointia.
Resumo:
Nykyinen Eurocode 3 suunnitteluohjeen rakenneputkiliitoksia käsittelevä osio vaatii S500 suurlujuusteräksestä valmistettujen liitosten mitoituksen yhteydessä käytettäväksi reduk-tiokerrointa 0.8. Tämä on varsin konservatiivinen mitoituspa, joka vähentää merkittävästi lujemman teräslaadun käyttämisestä saavutettavaa hyötyä. Tämän työn pääasiallinen ta-voite on laboratoriotestein selvittää S500 lujuusluokan rakenneputkiliitosten todellinen äärikapasiteetti ja verrata sitä nykyisen mitoitusohjeen mukaiseen kapasiteettiin. Tässä työssä tutkitut liitokset ovat valmistettu poikkileikkaukseltaan nelikulmaisista kyl-mämuovatuista rakenneputkista. Koesarja koostui kahdeksasta X-liitoksesta, sekä kymme-nestä K-liitoksesta. Kaikki testit suoritettiin huoneenlämmössä, LUT Koneen teräsrakenne-laboratoriossa. Laboratoriotestien lisäksi rakenteen käyttäytymistä tutkittiin epälineaarisen elementtimenetelmän avulla ja näitä tuloksia verrattiin kokeellisiin tuloksiin. Sekä testien että FE–analyysin perusteella voidaan todeta, että S500 lujuusluokan terästä käytettäessä ei Eurocode 3:n mukaisen reduktiokertoimen käytölle ole perusteita.
Resumo:
Growing demand for stainless steel construction materials has increased the popularity of substitutive materials for austenitic stainless steels. The lean duplex grades have taken their place in building of structures exposed to corrosive environments. Since the duplex grades are relatively new materials, the current codes and norms do not fully cover the newest duplex grades. The joints tested in this thesis were designed and studied according to Eurocode 3, even though all the materials are not yet accepted to the standards. The main objective in this thesis was to determine the differences of the used materials in behaviour under loading at low temperatures. Tests in which the deformation and strength properties of the joints were determined were done at the temperature of -46°C, which is the requirement of temperature for structures designed according to Norsok standards. Results show that replacing the austenitic grade with the lean duplex grade is acceptable.
Resumo:
Double grade S420MH/S355J2H – rakenneputki on Ruukin kylmämuovattujen rakenneputkien vakioteräslaji. Se voidaan mitoittaa joko lujuusluokan S355 tai S420 mukaisesti. Teräslajin S355 mukaisesti mitoitettaessa on suunnittelu yksinkertaista. Painonsäästöä ja pidennettyjä jännevälejä haluttaessa käytetään lujuusluokan S420 mukaista mitoitusta. Työn tavoitteena oli selvittää kylmämuovattujen teräsrakenneputkien todellinen puristuskestävyys. Eurocode 3:n mukaan kylmämuovatut teräsrakenneputket kuuluvat nurjahduskäyrälle c. Tutkimukseen valittiin viisi eri profiilia olevaa rakenneputkea, joiden poikkileikkausluokat olivat 1, 2, 3 ja 4. Käytettäessä rakenneputkia puristussauvoina, on teräksen käyttö tehokkainta poikkileikkausluokassa 3, lähellä poikkileikkausluokkaa 4. Rakenneputkista laskettiin muunnetun hoikkuuden arvoilla 0.1, 0.5, 1.0 ja 1.5 koesauvojen pituudet kaikille profiileille. Valmistettiin kolme samanlaista koesauvaa jokaisesta koosta ja puristuskokeita suoritettiin yhteensä 57 kappaletta. Koesauvojen todelliset pituudet, alkukäyryydet ja poikkileikkaukset mitattiin. Ainestodistuksista saatiin materiaalin todelliset lujuudet. Laskettiin Eurocode 3:n mukaisesti kestävyydet nurjahduskäyrille a, b ja c. Laskennallisia kestävyyksiä verrattiin puristuskokeiden tuloksiin. Puristuskokeiden tulosten perusteella voidaan b-käyrää pitää oikeana profiileille 100x100x3, 150,150x5 ja 200x200x6. Profiili 150x150x5 kuuluu poikkileikkausluokkaan 2. Profiilit 100x100x3 ja 200x200x6 kuuluvat poikkileikkausluokkaan 4. Profiili 50x50x2 kuuluu nurjahduskäyrälle c. Profiilin poikkileikkausluokka on 1 ja aiemmat tutkimukset tukevat nurjahduskäyrän c käyttöä. Profiilista 300x300x8.8 ei saatu testattua täyttä sarjaa sen suuren kapasiteetin rikottua testilaitteiston, mutta puristuskokeiden perusteella se kuuluu nurjahduskäyrälle b. Profiili kuuluu poikkileikkausluokkaan 4.