1000 resultados para Kunjin Virus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On 6 May 2001, a 67-year-old Australian born, Caucasian male presented to the Emergency Department of the Austin and Repatriation Medical Centre (A&RMC) with a 3 day history of fever, lethargy and confusion. This occurred one week after returning from a trip to the Northern Territory. His previous medical problems included ischaemic heart disease, a repaired abdominal aortic aneurysm, hypertension, hyperlipidaemia and congestive cardiac failure. He smoked 20 cigarettes per day and had a history of heavy alcohol consumption. He had no history of diabetes. His medications were aspirin, frusemide, lisinopril, simvastatin, and a nitroglycerol patch. Fifty years ago, he had an adverse reaction to penicillin with angioedema and an urticarial rash. Four weeks before admission he went on a fishing trip in the Northern Territory. He travelled by road, through outback regions of Victoria, New South Wales, Queensland, the Northern Territory and South Australia, spending time in Daly River, Coolum, Darwin, Dunmarra, Avon Downs, Innaminka and Mataranka. He was away for 3 weeks and camped in tents or outside in a swag throughout the trip. He recalls numerous times where he was exposed to mosquitoes with large numbers of bites at Dunmarra. During the time away, he remained well as did his 5 travelling companions. There was...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two sets of connected membranes induced in Kunjin virus-infected cells are characterized by the presence of NS3 helicase/protease in both, and by RNA-dependent RNA polymerase (RdRp) activity plus the associated double-stranded RNA (dsRNA) template in vesicle packets (VP), or by the absence of both the VP-specific markers in the convoluted membranes/paracrystalline arrays (CM/PC). Attempts were made to separate flavivirus-induced membranes by sedimentation or flotation analyses in density gradients of sucrose or iodixanol, respectively, after treatment of cell lysates by sonication, osmotic shock, or tryptic digestion. Only osmotic shock treatment provided suggestive evidence of separation. This was explored by flow cytometry analysis (FCA) of RdRp active membrane fractions from a sucrose gradient, using dual fluorescent labelling via antibodies to NS3 and dsRNA. FCA revealed the presence of a dual labelled membrane population indicative of VP, and in a faster sedimenting fraction a membrane population able to be labelled only in NS3, representative of CM/PC and associated (R)ER. It was postulated that osmotic shock ruptured the bounding membrane of the VP, releasing the enclosed small vesicles associated with the Kunjin virus replication complex characterized previously. Notably, the presence of the full spectrum of nonstructural proteins in some membrane fractions was not a reliable marker for RdRp activity. These experiments may provide the opportunity for isolation of relatively pure flavivirus replication complexes in their native membrane-associated state by fluorescence-activated cell sorting. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA replicons offer a number of qualities which make them attractive as vaccination vectors. Both alphavirus and flavivirus replicon vaccines have been investigated in preclinical models yet there has been little direct comparison of the two vector systems. To determine whether differences in the biology of the two vectors influence immunogenicity, we compared two prototypic replicon vectors based on Semliki Forest virus (SFV) (alphavirus) and Kunjin virus (KUN) (flavivirus). Both vectors when delivered as naked RNAs elicited comparable CD8+ T cell responses but the SFV vectors elicited greater humoral responses to an encoded cytoplasmic antigen beta-galactosidase. Studies in MHC class II-deficient mice revealed that neither vector could overcome the dependence of CD4+ T cell help in the development of humoral and cellular responses following immunization. These studies indicate that the distinct biology of the two replicon systems may differentially impact the adaptive immune response and this may need to be considered when designing vaccination strategies. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3' nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interferon (IFN) response is the first line of defense against viral infections, and the majority of viruses have developed different strategies to counteract IFN responses in order to ensure their survival in an infected host. In this study, the abilities to inhibit IFN signaling of two closely related West Nile viruses, the New York 99 strain (NY99) and Kunjin virus (KUN), strain MRM61C, were analyzed using reporter plasmid assays, as well as immunofluorescence and Western blot analyses. We have demonstrated that infections with both NY99 and KUN, as well as transient or stable transfections with their replicon RNAs, inhibited the signaling of both alpha/beta IFN (IFN-alpha/beta) and gamma IFN (IFN-gamma) by blocking the phosphorylation of STAT1 and its translocation to the nucleus. In addition, the phosphorylation of STAT2 and its translocation to the nucleus were also blocked by KUN, NY99, and their replicons in response to treatment with IFN-alpha. IFN-alpha signaling and STAT2 translocation to the nucleus was inhibited when the KUN nonstructural proteins NS2A, NS2B, NS3, NS4A, and NS4B, but not NS1 and NS5, were expressed individually from the pcDNA3 vector. The results clearly demonstrate that both NY99 and KUN inhibit IFN signaling by preventing STAT1 and STAT2 phosphorylation and identify nonstructural proteins. responsible for this inhibition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

West Nile virus (WNV) is a mosquito-borne flavivirus that is emerging as a global pathogen. In the last decade, virulent strains of the virus have been associated with significant outbreaks of human and animal disease in Europe, the Middle East and North America. Efforts to develop human and veterinary vaccines have taken both traditional and novel approaches. A formalin-inactivated whole virus vaccine has been approved for use in horses. DNA vaccines coding for the structural WNV proteins have also been assessed for veterinary use and have been found to be protective in mice, horses and birds. Live attenuated yellow fever WNV chimeric vaccines have also been successful in animals and are currently undergoing human trials. Additional studies have shown that immunisation with a relatively benign Australian variant of WNV, the Kunjin virus, also provides protective immunity against the virulent North American strain. Levels of efficacy and safety, as well as logistical, economic and environmental issues, must all be carefully considered before vaccine candidates are approved and selected for large-scale manufacture and distribution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adult mosquitoes (Diptera: Culicidae) were collected in January and February 2000 from Saibai Island in the Torres Strait of northern Australia, and processed for arbovirus isolation during a period of Japanese encephalitis (JE) virus activity on nearby Badu Island. A total of 84 2 10 mosquitoes were processed for virus isolation, yielding six flavivirus isolates. Viruses obtained were single isolates of JE and Kokobera (KOK) and four of Kunjin (KUN). All virus isolates were from members of the Culex sitiens Weidemann subgroup, which comprised 53.1 % of mosquitoes processed. Nucleotide sequencing and phylogenetic analysis of the pre-membrane region of the genome of JE isolate TS5313 indicated that it was closely related to other isolates from a sentinel pig and a pool of Cx. gelidus Theobald from Badu Island during the same period. Also molecular analyses of part of the envelope gene of KUN virus isolates showed that they were closely related to other KUN virus strains from Cape York Peninsula. The results indicate that flaviviruses are dynamic in the area, and suggest patterns of movement south from New Guinea and north from the Australian mainland.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Infection of humans with the West Nile flavivirus principally occurs via tick and mosquito bites. Here, we document the expression of antigen processing and presentation molecules in West Nile virus (WNV)-infected human skin fibroblast (HFF) cells. Using a new Flavivirus-specific antibody, 4G4, we have analyzed cell surface human leukocyte antigen (HLA) expression on virus-infected cells at a single cell level. Using this approach, we show that West Nile Virus infection alters surface HLA expression on both infected HFF and neighboring uninfected HFF cells. Interestingly, increased surface HLA evident on infected HFF cultures is almost entirely due to virus-induced interferon (IFN)alpha/beta because IFNalpha/beta-neutralizing antibodies completely prevent increased surface HLA expression. In contrast, RT-PCR analysis indicates that WNV infection results in increased mRNAs for HLA-A, -B, and -C genes, and HLA-associated molecules low molecular weight polypeptide-2 (LMP-2) and transporter associated with antigen presentation-1 (TAP-1), but induction of these mRNAs is not diminished in HFF cells cultured with IFNalpha/beta-neutralizing antibodies. Taken together, these data support the idea that that both cytokine-dependent and cytokine-independent mechanisms account for WNV-induced HLA expression in human skin fibroblasts. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of beta 1 and alpha 5 integrins and major histocompatibility complex I molecules. The level of GIP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP(1) expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GIP-expressing cells with GIP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.