994 resultados para Kotzebue Sound region
Resumo:
Bibliography: p. 66-69.
Resumo:
n.s. no.1(1980)
Resumo:
n.s. no.25(1995)
Resumo:
n.s. no.18(1992)
Resumo:
This layer is a georeferenced raster image of the historic, paper manuscript map entitled: Map of country between the N.E. Cape-Fear River and Topsail sound, made under the direction of Capt. Wm. H. James, Chf. Engineer, by B.L. Blackford, Top. Engrs. It was drawn in 1865. Scale 1:40,000. The image inside the map neatline is georeferenced to the surface of the earth and fit to the North Carolina State Plane NAD 1983 coordinate system (in Meters) (Fipszone 3200). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, bridges, drainage, troop camps, lines of defense, selected buildings with names of landowners, mills and salt works, ground cover, swamps, and more. Relief shown by hachures. Includes also ill. of Confederate soldier with a plane table and Confederate flag, at left within margin. This layer is part of a selection of digitally scanned and georeferenced historic maps of the Civil War from the Harvard Map Collection. Many items from this selection are from a collection of maps deposited by the Military Order of the Loyal Legion of the United States Commandery of the State of Massachusetts (MOLLUS) in the Harvard Map Collection in 1938. These maps typically portray both natural and manmade features, in particular showing places of military importance. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
The combination of rainy climate, glaciolacustrine clays, and steep topography of the Puget Lowland creates slope stability issues for the regional population. Several glaciolacustrine deposits of laminated silt and clay of different ages contribute to the likelihood of slope failure. The glaciolacustrine deposits are generally wet, range in thickness from absent to >30m, and consist of laminated silt and clay with sand interbeds at the tops and bottoms, sandy laminae throughout the deposits, occasional dropstones and shear zones. The glaciolacustrine deposits destabilize slopes by 1) impeding groundwater flow percolating through overlying glacial outwash sediments, 2) having sandy laminae that lower strength by increasing pore pressure during wet seasons, and 3) increasing the potential for block-style failure because of secondary groundwater pathways such as laminae and vertical fractures. Eight clay samples from six known landslide deposits were analyzed in this study for their mineralogy, clay fraction and strength characteristics. The mineralogy was determined using X-ray Diffractometry (XRD) which revealed an identical mineralogic suite among all eight samples consisting of chlorite, illite and smectite. Nonclay minerals appearing in the X-ray diffractogram include amphibole and plagioclase after removal of abundant quartz grains. Hydrometer tests yielded clay-size fraction percentages of the samples ranging from 10% to 90%, and ring shear tests showed that the angle of residual shear resistance (phi_r) ranged from 11° to 31°. Atterberg limits of the samples were found to have liquid limits ranging from 33 to 83, with plastic limits ranging from 25 to 35 and plasticity indices ranging from 6 to 48. The results of the hydrometer and residual shear strength tests suggest that phi_r varies inversely with the clay-size fraction, but that this relationship was not consistent among all eight samples. The nature of the XRD analysis only revealed the identity of the clay minerals present in the samples, and provided no quantitative information. Thus, the extent to which the mineralogy influenced the strength variability among the samples cannot be determined given that the mineral assemblages are identical. Additional samples from different locations within each deposit along with quantitative compositional analyses would be necessary to properly account for the observed strength variability.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
The worldwide literature on management of spotted seals, Phoca largha, was reviewed and updated, and aerial surveys weref lown in 1992 and 1993 to determine the species' distribution and abundance in U.S. waters. In April, spotted seals were found only in the Bering Sea ice front. In June, they were seen along deteriorating ice floes and fast ice in Norton Sound. Surveys along most of Alaska's western coast in August and September found over 2,500 spotted seals in Kuskokwim Bay and concentrations of 100-400 seals around Nunivak Island, Scammon Bay, Golovnin Bay/Norton Sound, Cape Espenberg/Kotzebue Sound, and Kasegaluk Lagoon. All of these sites have been used by spotted seals in the past. The sum of the highest counts, irrespective of year, was 3,570 seals (CV =0.06). This is not an abundance estimate for all spotted seals in the Bering Sea, because it does not account for animals in the water, and we did not survey the Asian coast and some islands. Also, spotted seals and harbor seals, Phoca vitulina, are too similar in appearance to be identified accurately from the air, so our results probably include a mix of these species where their ranges overlap.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
To migrate successfully, birds need to store adequate fat reserves to fuel each leg of the journey. Migrants acquire their fuel reserves at stopover sites; this often entails exposure to predators. Therefore, the safety attributes of sites may be as important as the feeding opportunities. Furthermore, site choice might depend on fuel load, with lean birds more willing to accept danger to obtain good feeding. Here, we evaluate the factors underlying stopover-site usage by migrant Western Sandpipers (Calidris mauri) on a landscape scale. We measured the food and danger attributes of 17 potential stopover sites in the Strait of Georgia and Puget Sound region. We used logistic regression models to test whether food, safety, or both were best able to predict usage of these sites by Western Sandpipers. Eight of the 17 sites were used by sandpipers on migration. Generally, sites that were high in food and safety were used, whereas sites that were low in food and safety were not. However, dangerous sites were used if there was ample food abundance, and sites with low food abundance were used if they were safe. The model including both food and safety best-predicted site usage by sandpipers. Furthermore, lean sandpipers used the most dangerous sites, whereas heavier birds (which do not need to risk feeding in dangerous locations) used safer sites. This study demonstrates that both food and danger attributes are considered by migrant birds when selecting stopover sites, thus both these attributes should be considered to prioritize and manage stopover sites for conservation.
Resumo:
Aerial surveys were conducted in 1999 and 2000 to estimate the densities of ringed (Phoca hispida) and bearded (Erignathus barbatus) seals in the eastern Chukchi Sea. Survey lines were focused mainly on the coastal zone within 37 km of the shoreline, with additional lines flown 148–185 km offshore to assess how densities of seals changed as a function of distance from shore. Satellite-linked time-depth recorders were attached to ringed seals in both years to evaluate the time spent basking on the ice surface. Haulout patterns indicated that ringed seals transitioned to basking behavior in late May and early June, and that the largest proportion of seals (60–68%) was hauled out between 0830 and 1530 local solar time. Ringed seals were relatively common in nearshore fast ice and pack ice, with lower densities in offshore pack ice. The average density of ringed seals was 1.91 seals km-2 in 1999 (range 0.37– 16.32) and 1.62 seals km-2 in 2000 (range 0.42–19.4), with the highest densities of ringed seals found in coastal waters south of Kivalina and near Kotzebue Sound. The estimated abundance of ringed seals for the entire study area was similar in 1999 (252,488 seals, SE=47,204) and 2000 (208,857 seals, SE=25,502). Bearded seals were generally more common in offshore pack ice, with the exception of high bearded seal numbers observed near the shore south of Kivalina. Bearded seal densities were not adjusted for haulout behavior, and therefore, abundance was not estimated. Unadjusted average bearded seal density was 0.07 seals km-2 in 1999 (range 0.011–0.393) and 0.14 seals km-2 in 2000 (range 0.009– 0.652). Levels of primary productivity, benthic biomass, and fast ice distribution may influence the distributions of ringed and bearded seals in the Chukchi Sea. Information on movement and haulout behavior of ringed and bearded seals would be very useful for designing future surveys.
Resumo:
Thirty-nine medium and fine grained sandstones from between 19,26 and 147,23 mbsf in the Cape Roberts-l core (CRP-1) were analysed for 10 major and 16 trace elements. Using whole-lock compositions, 9 samples were selected for analyses of mineral and glass grains by energy dispersive electron microscope. Laser-Ablation Mass-Spectrometry was used to determine rare earth elements and 14 additional trace elements in glass shards, pyroxenes and feldspars in order to examine their contribution to the bulk rock chemistry. Geochemical data reveal the major contribution played by the Granite Harbour Intrusives to the whole rock composition, even if a significant input is supplied by McMurdo volcanics and Ferrar dolerite pyroxenes McMurdo volcanics were studied in detail; they appeal to derive from a variety of litologies, and a dominant role of wind transpoitation from exposures of volcanic rocks may be inferred from the contemporary occurrence of different compositions at all depths. Only at 116.55 mbsf was a thin layer of tephra found, linked to an explosive eruption McMurdo volcanic rocks exhibit larger abundances at depths above 62 mbsf, in correspondence with the onset of volcanic activity in the McMurdo Sound area. From 62 mbsf to the bottom of the core, McMurdo volcanics are less abundant and probably issued from some centres in the McMurdo Sound region. However, available data do not allow the exclusion of wind transport from some eruptive centres active in north Victoria Land at the beginning of the Miocene Epoch.
Resumo:
A study of density and porosity is presented for the 1285-m-long AND-1B core recovered from a flexural moat in the McMurdo Sound (Antarctica) in order to interpret sediment consolidation in an ice-proximal location on the Antarctic shelf. Various lithologies imply environmental changes from open marine to subglacial, and are numerically expressed in high-resolution whole-core wet-bulk density (WBD). Grain density data interpolated from discrete samples range from 2.14 to 3.85 g/cm3 and are used to calculate porosity from WBD in order to avoid the 5%-15% overestimation and underestimation of porosities obtained by standard methods. The trend of porosity extends from 0.5 near the top (Pleistocene) to 0.2 at the bottom (Miocene). Porosity fluctuations in different lithologies are superimposed with 0.2-0.3 in sequences younger than ca. 1 Ma and 0.5-0.8 in Pliocene diatomites. The AND-1B porosities and void ratios of Pliocene diatomites and Pleistocene mudstones exhibit a large negative offset compared to modern lithological analogs and their consolidation trends. This offset cannot be explained in terms of the effective stress at the AND-1B site. The effective stress ranges from 0 to 4000 kPa in the upper 600 m, and reaches 13,000 kPa at the base of the AND-1B hole. We suggest an excess of effective overburden stress of ~1700 and ~6000 kPa to explain porosities in Pliocene diatomites and Pleistocene mudstones, respectively. This is interpreted as glacial preconsolidation by subsequently grounded ice sheets under subpolar to polar, followed by colder polar types of glaciations. Information on Miocene consolidation is sparse due to alteration by diagenesis.