916 resultados para Knowledge Discovery in Databases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-databases mining is an urgent task. This thesis solves 4 key problems in multi-databases mining: Application-independent database classification - Local instance analysis model - Useful pattern discovery - Pattern synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a data mining environment for knowledge discovery in bioinformatics applications. The system has a generic kernel that implements the mining functions to be applied to input primary databases, with a warehouse architecture, of biomedical information. Both supervised and unsupervised classification can be implemented within the kernel and applied to data extracted from the primary database, with the results being suitably stored in a complex object database for knowledge discovery. The kernel also includes a specific high-performance library that allows designing and applying the mining functions in parallel machines. The experimental results obtained by the application of the kernel functions are reported. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study here highlights the potential that analytical methods based on Knowledge Discovery in Databases (KDD) methodologies have to aid both the resolution of unstructured marketing/business problems and the process of scholarly knowledge discovery. The authors present and discuss the application of KDD in these situations prior to the presentation of an analytical method based on fuzzy logic and evolutionary algorithms, developed to analyze marketing databases and uncover relationships among variables. A detailed implementation on a pre-existing data set illustrates the method. © 2012 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rowland, J. J. (2004) On Genetic Programming and Knowledge Discovery in Transcriptome Data. Proc. IEEE Congress on Evolutionary Computation, Portland, Oregon. pp 158-165. ISBN 0-7803-8515-2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past decade, advances in the Internet and media technology have literally brought people closer than ever before. It is interesting to note that traditional sociological definitions of a community have been outmoded, for community has extended far beyond the geographical boundaries that were held by traditional definitions (Wellman & Gulia, 1999). Virtual or online community was defined in such a context to describe various forms of computer-mediated communication (CMC). Although virtual communities do not necessarily arise from the Internet, the overwhelming popularity of the Internet is one of the main reasons that virtual communities receive so much attention (Rheingold, 1999). The beginning of virtual communities is attributed to scientists who exchanged information and cooperatively conduct research during the 1970s. There are four needs of participants in a virtual community: member interest, social interaction, imagination, and transaction (Hagel & Armstrong, 1997). The first two focus more on the information exchange and knowledge discovery; the imagination is for entertainment; and the transaction is for commerce strategy. In this article, we investigate the function of information exchange and knowledge discovery in virtual communities. There are two important inherent properties embedded in virtual communities (Wellman, 2001):

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowing what to do with the massive amount of data collected has always been an ongoing issue for many organizations. While data mining has been touted to be the solution, it has failed to deliver the impact despite its successes in many areas. One reason is that data mining algorithms were not designed for the real world, i.e., they usually assume a static view of the data and a stable execution environment where resources are abundant. The reality however is that data are constantly changing and the execution environment is dynamic. Hence, it becomes difficult for data mining to truly deliver timely and relevant results. Recently, the processing of stream data has received many attention. What is interesting is that the methodology to design stream-based algorithms may well be the solution to the above problem. In this entry, we discuss this issue and present an overview of recent works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In knowledge discovery in single sequences, different results could be discovered from the same sequence when different frequency measures are adopted. It is natural to raise such questions as (1) do these frequency measures reflect actual frequencies accurately? (2) what impacts do frequency measures have on discovered knowledge? (3) are discovered results accurate and reliable? and (4) which measures are appropriate for reflecting frequencies accurately? In this paper, taking three major factors (anti-monotonicity, maximum-frequency and window-width restriction) into account, we identify inaccuracies inherent in seven existing frequency measures, and investigate their impacts on the soundness and completeness of two kinds of knowledge, frequent episodes and episode rules, discovered from single sequences. In order to obtain more accurate frequencies and knowledge, we provide three recommendations for defining appropriate frequency measures. Following the recommendations, we introduce a more appropriate frequency measure. Empirical evaluation reveals the inaccuracies and verifies our findings. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subsequence frequency measurement is a basic and essential problem in knowledge discovery in single sequences. Frequency based knowledge discovery in single sequences tends to be unreliable since different resulting sets may be obtained from a same sequence when different frequency metrics are adopted. In this chapter, we investigate subsequence frequency measurement and its impact on the reliability of knowledge discovery in single sequences. We analyse seven previous frequency metrics, identify their inherent inaccuracies, and explore their impacts on two kinds of knowledge discovered from single sequences, frequent episodes and episode rules. We further give three suggestions for frequency metrics and introduce a new frequency metric in order to improve the reliability. Empirical evaluation reveals the inaccuracies and verifies our findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'innovazione delle tecnologie di sequenziamento negli ultimi anni ha reso possibile la catalogazione delle varianti genetiche nei campioni umani, portando nuove scoperte e comprensioni nella ricerca medica, farmaceutica, dell'evoluzione e negli studi sulla popolazione. La quantità di sequenze prodotta è molto cospicua, e per giungere all'identificazione delle varianti sono necessari diversi stadi di elaborazione delle informazioni genetiche in cui, ad ogni passo, vengono generate ulteriori informazioni. Insieme a questa immensa accumulazione di dati, è nata la necessità da parte della comunità scientifica di organizzare i dati in repository, dapprima solo per condividere i risultati delle ricerche, poi per permettere studi statistici direttamente sui dati genetici. Gli studi su larga scala coinvolgono quantità di dati nell'ordine dei petabyte, il cui mantenimento continua a rappresentare una sfida per le infrastrutture. Per la varietà e la quantità di dati prodotti, i database giocano un ruolo di primaria importanza in questa sfida. Modelli e organizzazione dei dati in questo campo possono fare la differenza non soltanto per la scalabilità, ma anche e soprattutto per la predisposizione al data mining. Infatti, la memorizzazione di questi dati in file con formati quasi-standard, la dimensione di questi file, e i requisiti computazionali richiesti, rendono difficile la scrittura di software di analisi efficienti e scoraggiano studi su larga scala e su dati eterogenei. Prima di progettare il database si è perciò studiata l’evoluzione, negli ultimi vent’anni, dei formati quasi-standard per i flat file biologici, contenenti metadati eterogenei e sequenze nucleotidiche vere e proprie, con record privi di relazioni strutturali. Recentemente questa evoluzione è culminata nell’utilizzo dello standard XML, ma i flat file delimitati continuano a essere gli standard più supportati da tools e piattaforme online. È seguita poi un’analisi dell’organizzazione interna dei dati per i database biologici pubblici. Queste basi di dati contengono geni, varianti genetiche, strutture proteiche, ontologie fenotipiche, relazioni tra malattie e geni, relazioni tra farmaci e geni. Tra i database pubblici studiati rientrano OMIM, Entrez, KEGG, UniProt, GO. L'obiettivo principale nello studio e nella modellazione del database genetico è stato quello di strutturare i dati in modo da integrare insieme i dati eterogenei prodotti e rendere computazionalmente possibili i processi di data mining. La scelta di tecnologia Hadoop/MapReduce risulta in questo caso particolarmente incisiva, per la scalabilità garantita e per l’efficienza nelle analisi statistiche più complesse e parallele, come quelle riguardanti le varianti alleliche multi-locus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, complex networks have widely been applied to the study of many natural and man-made systems, and to the extraction of meaningful information from the interaction structures created by genes and proteins. Nevertheless, less attention has been devoted to metabonomics, due to the lack of a natural network representation of spectral data. Here we define a technique for reconstructing networks from spectral data sets, where nodes represent spectral bins, and pairs of them are connected when their intensities follow a pattern associated with a disease. The structural analysis of the resulting network can then be used to feed standard data-mining algorithms, for instance for the classification of new (unlabeled) subjects. Furthermore, we show how the structure of the network is resilient to the presence of external additive noise, and how it can be used to extract relevant knowledge about the development of the disease.