52 resultados para Kluyveromyces Marxianus
Resumo:
Background: In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX) from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties. Results: The highest GOX expression levels (1552 units of secreted protein per gram dry cell weight) were achieved using an episomal system, in which the INU1 promoter and terminator were used to drive heterologous gene expression, together with the INU1 prepro sequence, which was employed to drive secretion of the enzyme. In all cases, GOX was mainly secreted, remaining either in the periplasmic space or in the culture supernatant. Whereas the use of genetic elements from Saccharomyces cerevisiae to drive heterologous protein expression led to higher expression levels in K. lactis than in K. marxianus, the use of INU1 genetic elements clearly led to the opposite result. The biochemical characterization of GOX confirmed the correct expression of the protein and showed that K. marxianus has a tendency to hyperglycosylate the protein, in a similar way as already observed for other yeasts, although this tendency seems to be smaller than the one of e. g. K. lactis and S. cerevisiae. Hyperglycosylation of GOX does not seem to affect its affinity for the substrate, nor its activity. Conclusions: Taken together, our results indicate that K. marxianus is indeed a good host for the expression of heterologous proteins, not only for its physiological properties, but also because it correctly secretes and folds these proteins.
Resumo:
Fermentation of Theobroma cacao (cacao) seeds is an absolute requirement for the full development of chocolate flavor precursors. An adequate aeration of the fermenting cacao seed mass is a fundamental prerequisite for a satisfactory fermentation. Here, we evaluated whether a controlled inoculation of cacao seed fermentation using a Kluyveromyces marxianus hybrid yeast strain, with an increased pectinolytic activity, would improve an earlier liquid drainage (`sweatings`) from the fermentation mass, developing a superior final product quality. Inoculation with K. marxianus increased by one third the volume of drained liquid and affected the microorganism population structure during fermentation, which was detectable up to the end of the process. Introduction of the hybrid yeast affected the profile of total seed protein degradation evaluated by polyacrylamide gel electrophoresis, with improved seed protein degradation, and reduction of titrable acidity. Sensorial evaluation of the chocolate obtained from beans fermented with the K. marxianus inoculation was more accepted by analysts in comparison with the one from cocoa obtained through natural fermentation. The increase in mass aeration during the first 24 h seemed to be fundamental for the improvement of fermentation quality, demonstrating the potential application of this improved hybrid yeast strain with superior exogenous pectinolytic activity.
Resumo:
The Kluyveromyces marxianus strains CBS 6556, CBS 397 and CBS 712(T) were cultivated on a defined medium with either glucose, lactose or sucrose as the sole carbon source, at 30 and 37A degrees C. The aim of this work was to evaluate the diversity within this species, in terms of the macroscopic physiology. The main properties evaluated were: intensity of the Crabtree effect, specific growth rate, biomass yield on substrate, metabolite excretion and protein secretion capacity, inferred by measuring extracellular inulinase activity. The strain Kluyveromyces lactis CBS 2359 was evaluated in parallel, since it is the best described Kluyveromyces yeast and thus can be used as a control for the experimental setup. K. marxianus CBS 6556 presented the highest specific growth rate (0.70 h(-1)) and the highest specific inulinase activity (1.65 U mg(-1) dry cell weight) among all strains investigated, when grown at 37A degrees C with sucrose as the sole carbon source. The lowest metabolite formation and highest biomass yield on substrate (0.59 g dry cell weight g sucrose(-1)) was achieved by K. marxianus CBS 712(T) at 37A degrees C. Taken together, the results show a systematic comparison of carbon and energy metabolism among three of the best known K. marxianus strains, in parallel to K. lactis CBS 2359.
Resumo:
A hidrólise enzimática da lactose por beta-galactosidase desempenha importante papel no processamento de produtos lácteos, como na obtenção de leite com baixo teor de lactose para consumo por indivíduos intolerantes à mesma e na prevenção da cristalização em produtos de laticínio. Neste trabalho, a enzima beta-galactosidase foi produzida pelo cultivo do microrganismo Kluyveromyces marxianus, em meio de cultura à base de soro de queijo em diferentes concentrações iniciais de lactose e extrato de levedura, de acordo com um planejamento fatorial. As fermentações foram conduzidas em incubador rotativo a 150rpm, a 30°C e pH inicial 5,5. A concentração celular inicial foi de 10(7) células/mL. Para a extração da enzima beta-galactosidase, foi realizada autólise das células utilizando como solvente o clorofórmio em tampão fosfato. No meio de cultura enriquecido com (NH4)2SO4, KH2PO4 e MgSO4, nas concentrações iniciais de lactose e de extrato de levedura iguais a 50g/L e 12g/L, respectivamente, obteve-se uma atividade de 28,0UGl/mL e uma concentração celular máxima de 5,3g/L.
Resumo:
This work investigated the fructooligosaccharides (FOS) synthesis by immobilized inulinase obtained from Kluyveromyces marxianus NRRL Y-7571 in aqueous and aqueous-organic systems using sucrose as substrate. The sequential strategy of experimental design was used to optimize the FOS conversion in both systems. For the aqueous-organic system, a 2(6-2) fractional design was carried out to evaluate the effects of temperature, sucrose concentration, pH, aqueous/organic ratio, enzyme activity, and polyethylene glycol concentration. For the aqueous system, a central composite design for the enzyme activity and the sucrose concentration was carried out. The highest fructooligosaccharides yield (Y FOS) for the aqueous-organic system was 18.2 ± S0.9 wt%, at 40 ºC, pH 5.0, sucrose concentration of 60% (w/w), enzyme activity of 4 U.mL-1, and aqueous/organic ratio of 25/75 wt%. The highest Y FOS for the aqueous system was 14.6 ± 0.9 wt% at 40 ºC, pH 5.0, sucrose concentration of 60 wt%, and enzyme activity of 4.0 U.mL-1.
Resumo:
Microbial pectinolytic enzymes are known to play a commercially important role in a number of industrial processes. Two kinds of yeast can be discerned regarding the production of enzymes. One group includes those which can produce enzymes in the absence of an inducer, and the other group comprises the yeasts that produce enzymes in the presence of an inducer. The objective of this study was to investigate the influence of pectic substances, glucose, pH, and temperature on the polygalacturonase activity by Kluyveromyces marxianus CCMB 322. The yeast was grown in a fermentation broth containing different concentrations of glucose and pectic substances. The polygalacturonase activity was determined by the DNS method, and the pH and temperature were optimized using a central composite experimental design. The polygalacturonase secreted by K. marxianus CCMB 322 was partially constitutive showing optimum pH and temperature of 7.36 and 70 °C, respectively, and maintained approximately 93% of its original activity for 50 minutes at 50 °C. Thermal stability of the polygalacturonase enzyme was studied at different temperatures (50, 60, 70, and 80 °C) and different incubation times (0, 10, 20, 30, 40, and 50 minutes). This study showed that glucose can influence the regulation of the synthesis of polygalacturonase.
Resumo:
The yeast Kluyveromyces marxianus var. bulgaricus produced large amounts of extracellular inulinase activity when grown on inulin, sucrose, fructose and glucose as carbon source, This protein has been purified to homogeneity by using successive DEAE-Trisacryl Plus and Superose 6 HR 10/30 columns. The purified enzyme showed a relative molecular weight of 57 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 77 kDa by gel filtration in Superose 6 HR 10/30, Analysis by SDS-PAGE showed a unique polypeptide band with Coomassie Blue stain and nondenaturing PAGE of the purified enzyme obtained from media with different carbon sources showed the band, too, when stained for glucose oxidase activity, the optimal hydrolysis temperature for sucrose, raffinose and inulin was 55 degrees C and the optimal pH for sucrose was 4.75, the apparent K-m values for sucrose, raffinose and inulin are 4.58, 7.41 and 86.9 mg/ml, respectively, Thin layer chromatography showed that inulinase from K. marxianus var. bulgaricus was capable of hydrolyzing different substrates (sucrose, raffinose and inulin), releasing monosaccharides and oligosaccharides, the results obtained suggest the hypothesis that enzyme production was constitutive.
Resumo:
The inulinase production by yeast K marxianus var. bulgaricus growing in yacon extract was investigated. The microorganism showed good development in yacon, higher enzymatic activities were achieved at 30% and 40% (v/v) of extract. The cultivation temperature (20, 25, 30, 35, 40 degreesC) neither influenced the growth or the enzymatic activity. The optimum cultivation pH was 3.5. The highest activity was observed at 60 degreesC and pH 4.0. At temperature of 55 C and 60 C occurred sharp decrease in the enzyme activity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The crude cell-free medium from a culture of Kluyveromyces marxianus var. bulgaricus was immobilized in a gelatin-water support, with an immobilization yield of 82.60% for inulinase activity. The optimum pH for both free and immobilized inulinase was the same (3.5) and the optimum temperatures were 55 degrees C for the free and 60 degrees C for the immobilized enzyme. The Arrhenius plots were linear and activation energies were 56.20 (free enzyme) and 20.27 kj/mol K (immobilized enzyme). The kinetic parameters were calculated by Lineweaver-Burk plots and the V-max and K-m were 37.60 IU/mg protein and 61.83 mM for the free inulinase and 31.45 IU/mg protein and 149.28 mM for the immobilized enzyme, respectively. The operational stability of the immobilized inulinase was studied in a continuous fixed-bed column reactor for 33 days, at the end of which the sucrose conversion was 58.12%. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work studied the influence of nitrogen source and sucrose concentration in the feeding medium for biomass and inulinase production by Kluyveromyces marxianus var. bulgaricus. The results show that the best nitrogen source was a combination of 5 g/L of yeast extract and 10 g/L of peptone. Both cellular growth and enzymatic activity increased with sucrose concentration in the feeding medium (from 200 to 500 g/L). When the sucrose concentration reached 600 g/L, both cellular growth and enzymatic activity decreased.
Resumo:
During the growth of Kluyveromyces marxianus var. marxianus ATCC 10022 on lactose, peaks of glucose, but not β-galactosidase activity, were detected in culture medium. Harvested and washed whole cells produced glucose and galactose from lactose, or ortho-nitro-phenol from the chromogenic substrate ortho-nitro-phenyl-β-D-galactopyranoside (ONPG), indicating that β-galactosidase is physically associated with cells. ONPG hydrolysis by whole cells presented a monophasic kinetics (Km 36.6 mM) in lactose exponential growth phase cells, but a biphasic kinetics (Km 0.2 and 36.6 mM) in stationary growth phase cells. Permeabilization with digitonin or disruption of cells from both growth phases led to monosite ONPG hydrolysis (Km 2.2 to 2.5 mM), indicating that β-galactosidase is not located in the periplasm. In addition, the energy inhibitors fluoride or arsenate, as well as the uncouplercarbonyl cyanide m-chlorophenylhydrazone (CCCP) prevented ONPG hydrolysis by whole cells. These findings indicate that energy coupled transmembrane transport is the rate-limiting step for intracellular ONPG cleavage. The taxonomic and physiologic implications of the exclusive intracellular location of β-galactosidase of K. marxianus var. marxianus ATCC 10022 are discussed. © 1996 Kluwer Academic Publishers.
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Ribonucleotides have shown many promising applications in food and pharmaceutical industries. The aim of the present study was to produce ribonucleotides (RNA) by Kluyveromyces marxianus ATCC 8,554 utilizing cheese whey, a dairy industry waste, as a main substrate under batch fermentation conditions. The effects of temperature, pH, aeration rate, agitation and initial cellular concentration were studied simultaneously through factorial design for RNA, biomass production and lactose consumption. The maximum RNA production (28.66 mg/g of dry biomass) was observed at temperature 30°C, pH 5.0 and 1 g/l of initial cellular concentration after 2 h of fermentation. Agitation and aeration rate did not influence on RNA concentration (p >0.05). Maximum lactose consumption (98.7%) and biomass production (6.0 g/l) was observed after 12 h of incubation. This study proves that cheese whey can be used as an adequate medium for RNA production by K. marxianus under the optimized conditions at industrial scale.