270 resultados para Klebsiella
Resumo:
Extended spectrum β-lactamases or ESBLs, which are derived from non-ESBL precursors by point mutation of β-lactamase genes (bla), are spreading rapidly all over the world and have caused considerable problems in the treatment of infections caused by bacteria which harbour them. The mechanism of this resistance is not fully understood and a better understanding of these mechanisms might significantly impact on choosing proper diagnostic and treatment strategies. Previous work on SHV β-lactamase gene, blaSHV, has shown that only Klebsiella pneumoniae strains which contain plasmid-borne blaSHV are able to mutate to phenotypically ESBL-positive strains and there was also evidence of an increase in blaSHV copy number. Therefore, it was hypothesised that although specific point mutation is essential for acquisition of ESBL activity, it is not yet enough, and blaSHV copy number amplification is also essential for an ESBL-positive phenotype, with homologous recombination being the likely mechanism of blaSHV copy number expansion. In this study, we investigated the mutation rate of non-ESBL expressing K. pneumoniae isolates to an ESBL-positive status by using the MSS-maximum likelihood method. Our data showed that blaSHV mutation rate of a non-ESBL expressing isolate is lower than the mutation rate of the other single base changes on the chromosome, even with a plasmid-borne blaSHV gene. On the other hand, mutation rate from a low MIC ESBL-positive (≤ 8 µg/mL for cefotaxime) to high MIC ESBL-positive (≥16 µg/mL for cefotaxime) is very high. This is because only gene copy number increase is needed which is probably mediated by homologous recombination that typically takes place at a much higher frequencies than point mutations. Using a subinhibitory concentration of novobiocin, as a homologous recombination inhibitor, revealed that this is the case.
Resumo:
Background Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States and is caused by a range of uropathogens. Biofilm formation by uropathogens that cause CAUTI is often mediated by cell surface structures such as fimbriae. In this study, we characterised the genes encoding type 3 fimbriae from CAUTI strains of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter koseri and Citrobacter freundii. Results Phylogenetic analysis of the type 3 fimbrial genes (mrkABCD) from 39 strains revealed they clustered into five distinct clades (A-E) ranging from one to twenty-three members. The majority of sequences grouped in clade A, which was represented by the mrk gene cluster from the genome sequenced K. pneumoniae MGH78578. The E. coli and K. pneumoniae mrkABCD gene sequences clustered together in two distinct clades, supporting previous evidence for the occurrence of inter-genera lateral gene transfer. All of the strains examined caused type 3 fimbriae mediated agglutination of tannic acid treated human erythrocytes despite sequence variation in the mrkD-encoding adhesin gene. Type 3 fimbriae deletion mutants were constructed in 13 representative strains and were used to demonstrate a direct role for type 3 fimbriae in biofilm formation. Conclusions The expression of functional type 3 fimbriae is common to many Gram-negative pathogens that cause CAUTI and is strongly associated with biofilm growth. Our data provides additional evidence for the spread of type 3 fimbrial genes by lateral gene transfer. Further work is now required to substantiate the clade structure reported here by examining more strains as well as other bacterial genera that make type 3 fimbriae and cause CAUTI.
Resumo:
The ability to metabolize aromatic beta-glucosides such as salicin and arbutin varies among members of the Enterobacteriaceae. The ability of Escherichia coli to degrade salicin and arbutin appears to be cryptic, subject to activation of the bgl genes, whereas many members of the Klebsiella genus can metabolize these sugars. We have examined the genetic basis for beta-glucoside utilization in Klebsiella aerogenes. The Klebsiella equivalents of bglG, bglB and bglR have been cloned using the genome sequence database of Klebsiella pneumoniae. Nucleotide sequencing shows that the K. aerogenes bgl genes show substantial similarities to the E. coli counterparts. The K. aerogenes bgl genes in multiple copies can also complement E. coli mutants deficient in bglG encoding the antiterminator and bglB encoding the phospho-beta-glucosidase, suggesting that they are functional homologues. The regulatory region bglR of K aerogenes shows a high degree of similarity of the sequences involved in BglG-mediated regulation. Interestingly, the regions corresponding to the negative elements present in the E. coli regulatory region show substantial divergence in K aerogenes. The possible evolutionary implications of the results are discussed. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.v. All rights reserved.
Resumo:
Background: In this study we describe the clinical and molecular characteristics of an outbreak due to carbapenem-resistant Klebsiella pneumoniae (CR-KP) producing CTX-M-15 and OXA-48 carbapenemase. Isogenic strains, carbapenem-susceptible K. pneumoniae (CS-KP) producing CTX-M-15, were also involved in the outbreak. Results: From October 2010 to December 2012 a total of 62 CR-KP and 23 CS-KP were isolated from clinical samples of 42 patients (22 had resistant isolates, 14 had susceptible isolates, and 6 had both CR and CS isolates). All patients had underlying diseases and 17 of them (14 patients with CR-KP and 3 with CS-KP) had received carbapenems previously. The range of carbapenem MICs for total isolates were: imipenem: 2 to >32 mu g/ml vs. <2 mu g/ml; meropenem: 4 to >32 mu g/ml vs. <2 mu g/ml; and ertapenem: 8 to >32 mu g/ml vs. <2 mu g/ml. All the isolates were also resistant to gentamicin, ciprofloxacin, and cotrimoxazole. Both types of isolates shared a common PFGE pattern associated with the multilocus sequence type 101 (ST101). The bla(CTX-M-15) gene was detected in all the isolates, whereas the bla(OXA-48) gene was only detected in CR-KP isolates on a 70 kb plasmid. Conclusions: The clonal spread of K. pneumoniae ST101 expressing the OXA-48 and CTX-M-15 beta-lactamases was the cause of an outbreak of CR-KP infections. CTX-M-15-producing isolates lacking the blaOXA-48 gene coexisted during the outbreak.
Resumo:
Plasmídios são DNA extracromossômicos, com capacidade de se duplicarem de forma independente das células que os albergam, e são responsáveis pela expressão de uma variedade de características, como fatores de virulência. O material do presente estudo se constituiu da cepa receptora E. coli K12-R23, e de cepas de Klebsiella pneumoniae e de Escherichia coli, doadoras de plasmídios R e transconjugantes. O objetivo do presente estudo foi analisar os fenótipos conferidos em cepas transconjugantes de ambas bactérias pela transferência de plasmídios R de cepas doadoras para a receptora. Para a análise dos fenótipos, utilizaram-se, nas cepas do estudo, algumas variáveis: sensibilidade a antimicrobianos e a ERO, aderência a células HEp-2, e formação de slime e de biofilme. O marcador da presença de plasmídio, neste trabalho, foi a presença de resistênca à gentamicina nas cepas doadoras. Os resultados indicaram que houve transferência de plasmídio, pois as cepas transconjugantes de K. pneumoniae e de E. coli apesentaram este marcador (foram resistentes à gentamicina); além disso, as cepas transconjugantes mostraram perfis distintos da receptora em relação à sensibilidade aos antimicrobianos, às ERO, aos padrões de aderência às células HEp-2 e à formação de slime, apesar de a formação de biofilme nestas cepas não ter sofrido modificações. Observou-se, contudo, que várias características das cepas doadoras não foram encontradas nas cepas transconjugantes de E. coli e de K. pneumoniae.
Resumo:
植生克雷伯氏菌(Klebsiella planticola 19-1)是从新疆鄯善地区玉米根际分离得到的一株联合固氮菌。在40℃高温下有较强的乙炔还原活性。 本工作利用Southern Blot分子杂交技术, 以Klebsiella pneumoniae的nifA为探针,证明了在K.planticola 19-1中存在nifA-like基因,由nifH-lacZ实验推论其nifA-like基因产物对高温相对稳定。经过大质粒电泳和Southern Blot分子杂交,发现nifA-like基因定位于染色体外的大质粒上。本工作进一步克隆了含有K.plonticola 19-1的nifA-like基因的DNA片段,做了它的限制性酶切图谱,并将nifA-like基因初步定位。
Resumo:
从内蒙流沙地先锋植物沙竹(Psammochloa mongokca)内分离到一株内生细菌,经鉴定定名为Klebsiella oxytoca SA-2 K.oxytoca SA-2兼性厌氧固氮,NH4+抑制其固氮酶合成。部分抑制固氮酶活性;N03 -抑制其固氮酶的合成和活性。 60℃灭活K.oxytoca SA-2整体菌免疫兔子得到抗血清。免疫印迹表明此抗血清具K.oxytoca SA-2种特异性。石蜡切片免疫金银染色结合显微观察发现K.oxytoca SA-2定殖于沙竹叶鞘薄壁细胞和叶片的薄壁细胞内。 K.oxytoca SA-2在半固体培养基中接种水稻幼苗,限菌培养21天,根内重新分离的数量达l06 cfu/g.FWroot,但K.oxytoca SA-2在富养的土壤中生长良好,表现为兼性内生菌。 限菌培养水稻(Oryza sativa)幼苗,石蜡切片免疫金银染色结合显微观察研究了的K.oxytoca SA-2的侵染特性.K.oxytoca SA-2可以通过侧根发生处和表皮细胞胞间层进入根内,在皮层薄壁细胞间隙大量定殖,在解体和看似完整的薄壁细胞内也有定殖,在根和茎中柱内K.oxytoca SA-2进入了木质部导管。在根基,K.oxytoca SA-2大量侵入了已解体的内皮层和中柱鞘细胞,植物细胞在K.oxytoca SA-2侵入后解体,可能表现为严格的局部超敏反应。 接种K.oxytoca SA-2 21天,水稻地上苗部分没有发现肉眼和显微可见的病症。与对照相比,接种K.oxytoca SA-2显著促进限氮培养水稻幼苗的生长。由于K.oxytoca SA-2在限碳限氮培养基和水稻幼苗共培养时能分泌NH4+和植物激素,它可能通过向水稻幼苗提供氮素和分泌植物激素促进植物生长。而且用固氮酶铁蛋白抗血清进行免疫金银染色发现定殖在根基皮层薄壁细胞胞间层和细胞间隙,木质部导管和茎基木质部导管的K.oxytoca SA-2可以表达固氮酶,固氮参与了K.oxytoca SA-2在水稻幼苗中的内生。 培养基内碳源(苹果酸)和培养温度对K.oxytoca SA-2和水稻幼苗相互作用的影响也进行了研究。 研究表明,K.oxytoca SA-2作为兼性内生固氮菌,能够和植物紧密联合,并在植物体内开拓一个有利的生态位固氮,而且K.oxytoca SA-2可以分泌NH4+和植物激素,在和植物相互作用中使植物受益。
Resumo:
Were study a horse (Equus caballus), Purebred Spanish Horse, 6 years old, intact male sex, weight about 550kg, from equestrian center in Fregenal Sierra-Extremadura, Spain. History of acute diarrhea, are apply conventional treatment (hydration, anti-inflammatory and antibiotic). Physical examination showed severe profuse, fetid diarrhea deep red, tachypnea. The physiological parameters were: heart rate 60 bpm, respiratory rate 39 rpm and mucous cyanotic. Temperature: 40°C. Hematological examination showed severe leucopenia, decreased total serum protein, albumin and globulin also diminished. Serum chemistry evidenced severe hyponatremia and hypokalemia, with high levels of chlorine indicating metabolic acidosis. A stool analysis, which was negative and showed no eggs or larvae in the samples studied was performed. The microbial culture allowed the isolation of Klebsiella sp. and susceptibility testing showed sensitivity to ampicillin, Cetafzidine, Ciprofloxacin, Cefepine, gentamicin, imipenem, meropenem, Piperaciclina, piperacillin / tazobactam and trimethoprim sulfa resistance. The horse presented systemic complications associated with endotoxemia and death 36 hours after the onset of diarrhea. At necropsy, severe bleeding was observed enterotiflocolitis. The histological sections showed proliferative enteritis characterized by lymphocyte and mononuclear inflammatory infiltrate plasmocytorious mucosa and submucosa, coagulation necrosis, bacteria and short rod type morphology with no specific grouping. In conclusion a case of acute syndrome enterotiflocolitis reported Klebsiella sp. on a horse Purebred Spanish.
Resumo:
http://www.jidc.org/index.php/journal/article/view/20818098/422 Background: Extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae have been reported previously from Pakistan but the genotypic characteristics of these enzymes is not known. Hence the aim of the study was first to characterise the genotypic content of these beta-lactamases and secondly to assess the clonal relationship of these isolates. Methodology: We analysed 65 non-duplicate ESBL positive, K. pneumoniae isolates prospectively collected based on phenotype as detected using the two-disc method. Isolates were collected from different sources: blood cultures (46.15%; n = 30); tracheal aspirates (24.6%; n = 16); urine (10.7%; n = 7); wound swabs, pus and tissue (18.4%; n = 12). ESBL production was confirmed by the ESBL E-test method and the presence of the blaCTX-M encoding genes was confirmed by polymerase chain reaction. The clonal relationship of clinical isolates was studied by Pulsed Field Gel Electrophoresis. Results: The results showed that 93.84% (n = 61) isolates of K. pneumoniae were positive for the blaCTX-M-1 group. One isolate showed PCR signals for blaCTX-M-25 group. None of our isolates were positive for CTX-M groups 2, 8 and 9. The majority of blaCTX-M positive isolates were genetically unrelated and no epidemic clones were identified. Conclusion: This study reports the emergence of CTX-M groups 1 and 25 producing isolates of K. pneumoniae with genetic diversity in Karachi, Pakistan.
Resumo:
Tigecycline resistance has been attributed to ramA overexpression and subsequent acrA upregulation. The ramA locus, originally identified in Klebsiella pneumoniae, has homologues in Enterobacter and Salmonella spp. In this study, we identify in silico that the ramR binding site is also present in Citrobacter spp. and that Enterobacter, Citrobacter and Klebsiella spp. share key regulatory elements in the control of the romA–ramA locus. RACE (rapid amplification of cDNA ends) mapping indicated that there are two promoters from which romA–ramA expression can be regulated in K. pneumoniae. Correspondingly, electrophoretic binding studies clearly showed that purified RamA and RamR proteins bind to both of these promoters. Hence, there appear to be two RamR binding sites within the Klebsiella romA–ramA locus. Like MarA, RamA binds the promoter region, implying that it might be subject to autoregulation. We have identified changes within ramR in geographically distinct clinical isolates of K. pneumoniae. Intriguingly, levels of romA and ramA expression were not uniformly affected by changes within the ramR gene, thereby supporting the dual promoter finding. Furthermore, a subset of strains sustained no changes within the ramR gene but which still overexpressed the romA–ramA genes, strongly suggesting that a secondary regulator may control ramA expression.
Resumo:
Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466-4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.
Resumo:
Tigecycline resistance in Klebsiella pneumoniae results from ramA upregulation that causes the overexpression of the efflux pump, AcrAB-TolC. Tigecycline mutants, derived from Ecl8?ramA, can exhibit a multidrug resistance phenotype due to increased transcription of the marA, rarA, acrAB, and oqxAB genes. These findings support the idea that tigecycline or multidrug resistance in K. pneumoniae, first, is not solely dependent on the ramA gene, and second, can arise via alternative regulatory pathways in K. pneumoniae. © 2012, American Society for Microbiology.