956 resultados para Kinetic Studies
Resumo:
The effect of cobalt salicylate on the oxidative degradation and ignition of polystyrene has been studied. It was found that cobalt salicylate sensitizes both the degradation and ignition of polystyrene by facilitating electron-transfer processes in the propagation step. From thermochemical and kinetic studies it was found that the cobalt ion, owing to its ability to exist in variable valence states, promotes electron transfer in the propagation step of polymer degradation, increasing the rate of propagation and consequently the overall rate. Using solid-phase thermal ignition theory, an attempt has been made to explain the sensitization of ignition by the cobalt ion.
Resumo:
Polystyrene peroxide has been synthesized and its decomposition has been studied by thermogravimetry and differential thermal analysis. Polystyrene peroxide has been found to decompose exothermically at about 110°C. The activation energy for the decomposition was estimated to be 30 kcal/mole both by the Jacobs and Kureishy method and by fitting the α versus time curves to the first-order kinetic equation. This suggests that the rate-controlling step in the decomposition of polystyrene peroxide is cleavage of the O---O bond.
Resumo:
The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.
Resumo:
The rates of the reactions of hexachlorocyclotriphosphazene (N3P3Cl6) and octachlorocyclotetraphosphazene (N4P4Cl8) with t-butylamine in methyl cyanide were determined at three temperatures in the range 273–308 K. The reaction of N3P3Cl6 was also studied in tetrahydrofuran. Rigorous purification of the chlorophosphazenes and the solvents was essential to obtain reproducible results. An SN2(P) mechanism involving the formation of a five-co-ordinate phosphorus intermediate is in accord with the kinetic data. The greater reactivity of N4P4Cl8 compared to that of N3P3Cl6 arises entirely from the lowering of the enthalpy of activation. The effects of ring size and the solvent on the rates are discussed in terms of the activation parameters.
Resumo:
1. 1. Diverse classes of compounds such as dicarboxylates, pyrophosphates, quinols and nitrophenols are known to activate mitochondrial succinate dehydrogenase (EC 1.3.99.1). Examples in each class — malonate, pyrophosphate, ubiquinol and 2,4-dinitrophenol — are selected for comparative studies on the kinetic constants and structural relationship. 2. 2. The activated forms of the enzyme obtained on preincubating mitochondria with the effectors exhibited Michaelian kinetics and gave doublereciprocal plots which are nearly parallel to that of the basal form. On activation, Km for the substrate also increased along with V. The effectors activated the enzyme at low concentrations and inhibited, in a competitive fashion, at high concentrations. The binding constant for activation was lower than that for inhibition for each effector. 3. 3. These compounds possess ionizable twin oxygens separated by a distance of Image and having fractional charges in the range of −0.26 to −0.74 e. The common twin-oxygen feature of the substrate and the effectors suggested the presence of corresponding counter charges in the binding domain. The competitive nature of effectors with the substrate for inhibition further indicated the close structural resemblance of the activation and catalytic sites.
Resumo:
Transparent glasses of BaNaB9O15 (BNBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were, respectively, confirmed by x-ray powder diffraction and differential scanning calorimetry (DSC). The glass transition and crystallization parameters were evaluated under non-isothermal conditions using DSC. The correlation between the heating rate dependent glass transition and the crystallization temperatures was studied and the Kauzmann temperature was deduced for BNBO glass plates and powdered samples. The values of the Kauzmann temperature for the plates and powdered samples were 776 K and 768 K, respectively. An approximation- free method was used to evaluate the crystallization kinetic parameters for the BNBO glass samples. The effect of the sample thickness on the crystallization kinetics of BNBO glasses was also investigated.
Resumo:
The binding of winged bean basic agglutinin (WBA I) to 4-methylumbelliferyl (MeUmb) galactosides was examined by extrinsic fluorescence titration and stopped-flow spectrofluorimetry. Upon binding to WBA I, MeUmb alpha-galactosides show quenching in fluorescence intensity, decrease in UV absorbance with a concomitant blue shift, and decrease in fluorescence excited-state lifetimes. However, their beta-analogues show enhancement in fluorescence intensity, increase in UV absorbance with a red shift, and an increase in fluorescence excited-state lifetimes. This implies that the umbelliferyl groups of alpha- and beta-galactosides experience non-polar and polar microenvironments, respectively, upon binding to WBA I. Replacement of the anomeric hydroxyl group of galactose by 4-methylumbelliferyl moiety increases the affinity of resulting saccharides. Substitution of C-2 hydroxyl of galactose by an acetamido group leads to increased affinity due to a favorable entropy change. This suggests that acetamido group of MeUmb-alpha/beta-GalNAc binds to a relatively non-polar subsite of WBA I. Most interestingly, this substitution also reduces the association rate constants dramatically. Inspection of the activation parameters reveals that the enthalpy of activation is the limiting factor for the differences in the forward rate constants for these saccharides and the entropic contribution to the activation energy is small
Resumo:
The binding of Artocarpus integrifolia lectin (jacalin) to 4-methylumbelliferyl (Meumb)-glycosides, Gal alpha Meumb, Gal beta Meumb, GalNAc alpha Meumb, GalNAc beta-Meumb, and Gal beta 3GalNAc beta Meumb was examined by extrinsic fluorescence quenching titration and stopped flow spectrofluorimetry. The binding was characterized by 100% quenching of fluorescence of Meumb-glycosides. Their association constants range from 2.0 x 10(4) to 1.58 x 10(6) M-1 at 15 degrees C. Entropic contribution is the major stabilizing force for avid binding of Meumb-glycosides indicating the existence of a hydrophobic site that is complementary to their methylumbelliferyl group. The second order association rate constants for interaction of these sugars with lectin at 15 degrees C vary from 8.8 x 10(5) to 3.24 x 10(6) M-1 S-1, at pH 7.2. The first order dissociation rate constants range from 2.30 to 43.0 S-1 at 15 degrees C. Despite the differences in their association rate constants, the overall values of association constants for these saccharides are determined by their dissociation rate constants. The second order rate constant for the association of Meumb-glycosides follows a pattern consistent with the magnitude of the activation energies involved therin. Activation parameters for association of all ligands illustrate that the origin of the barrier between binding of jacalin to Meumb-glycosides is entropic, and the enthalpic contribution is small. A correlation between these parameters and the structure of the ligands on the association rates underscores the importance of steric factors in determining protein saccharide recognitions.
Resumo:
Fluorescence and stopped-flow spectrophotometric studies on three plant lectins fromPsophocarpus tetragonolobus (winged bean),Glycine max (soybean) andArtocarpus integrifolia (jack fruit) have been studied usingN-dansylgalactosamine as a fluorescent ligand. The best monosaccharide for the winged bean agglutinin I (WBA I) and soybean (SBA) is Me-agrGalNAc and for jack fruit agglutinin (JFA) is Me-agrGal. Examination of the percentage enhancement and association constants (1.51×106, 6.56×106 and 4.17×105 M–1 for SBA, WBA I and JFA, respectively) suggests that the combining regions of the lectins SBA and WBA I are apolar whereas that of JFA is polar. Thermodynamic parameters obtained for the binding of several monosaccharides to these lectins are enthalpically favourable. The binding of monosaccharides to these lectins suggests that the-OH groups at C-1, C-2, C-4 and C-6 in thed-galactose configuration are important loci for interaction with these lectins. An important finding is that the JFA binds specifically to Galß1-3GaINAc with much higher affinity than the other disaccharides which are structurally and topographically similar.The results of stopped-flow spectrometry on the binding ofN-dansylgalactosamine to these lectins are consistent with a bimolecular single step mechanism. The association rate constants (2.4×105, 1.3×104, and 11.7×105 M–1 sec–1 for SBA, WBA I and JFA, respectively) obtained are several orders of magnitude slower than the ones expected for diffusion controlled reactions. The dissociation rate constants (0.2, 3.2×10–2, 83.3 sec–1 for SBA, WBA I and JFA, respectively) obtained for the dissociation ofN-dansylgalactosamine from its lectin complex are slowest for SBA and WBA I when compared with any other lectin-ligand dissociation process.
Resumo:
Kinetics of the interaction of Au(III) with native calf thymus DNA has been studied spectrophotometrically to determine the kinetic parameters and to examine their dependency on the concentrations of DNA and Au(III), temperature, ionic strength and pH. The reaction is of the first order with respect to both the nucleotide unit of DNA and Au(III) in the stoichiometry of 2∶1 respectively. The rate constants vary with the initial ratio of DNA to Au(III) and is attributed to the effect of free chloride ions and the existence of a number of reaction sites with slight difference in the rate constants. The activation energies of this interaction have been found to be 14–16 kcal/mol. From the effect of ionic strength the reaction is found to occur between a positive and a negative ion in the rate-limiting step. The logarithm of rate constants are the linear function of pH and the slopes are dependent on ther-values. A plausible mechanism has been proposed which involves a primary dissociation of the major existing species (AuCl2(OH)2)−, to give (AuCl2)+ which then reacts with a site in the nucleotide unit of DNA in the rate-liminting step followed by a rapid binding to another site on the complementary strand of the DNA double helix. There exist a number of binding sites with slight difference in reactivity.
Resumo:
Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacteriumsmegmatis (MsASL) and Mycobacteriumtuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16 angstrom. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. Structured digital abstract andby()
Resumo:
Our recent studies on kinetic behaviors of gas flows are reviewed in this paper. These flows have a wide range of background, but share a common feature that the flow Knudsen number is larger than 0.01. Thus kinetic approaches such as the direct simulation Monte Carlo method are required for their description. In the past few years, we studied several micro/nano-scale flows by developing novel particle simulation approach, and investigated the flows in low-pressure chambers and at high altitude. In addition, the microscopic behaviors of a couple of classical flow problems were analyzed, which shows the potential for kinetic approaches to reveal the microscopic mechanism of gas flows.
Resumo:
Quantitative investigations of the mechanisms and the kinetics of the surface-catalyzed activation of C-H, N-H, C-C, and C-N bonds on the close-packed surfaces of Ir(111) and Ru(001) have been performed. The interaction of CH_3NH_2 with Ru(001) was investigated in ultrahigh vacuum with the techniques of high-resolution electron energy loss spectroscopy and thermal desorption mass spectrometry. Activation of the central C-N bond is observed, but it is less favored than the competing channel of complete dehydrogenation, by a ratio between 2:1 to 3:1. The decomposition mechanism has been characterized with several surface intermediates and gas-phase products identified. A pronounced preference for the activation of C-H over N-H and C-N bonds has been established. Additionally, the kinetics of the initial dissociation of short chain alkanes on Ir(111) has been examined, and the rate parameters of the activation of C-C bonds and primary, secondary, and tertiary C-H bonds have been determined. The formation of primary alkyl products is favored, over most of the experimental temperature range, despite the thermodynamic preference for the activation of individual secondary and tertiary C-H bonds in comparison to individual primary C-H bonds. At higher surface temperatures, the activation of C-C bonds occurs at competitive rates to the C-H reaction channel. The measured deuterium kinetic isotope effect implicates substantial deformation of the terminal methyl group in the transition state of C-C bond cleavage. Finally, the surface structure sensitivity of C-H bond cleavage has been quantified for smooth (111) and corrugated (110) surfaces of iridium and platinum, as well as for step edge defect sites on Ir(111).