954 resultados para Kinetic Selectivity
Resumo:
Nitrogen adsorption at 77 K is the current standard means for pore size determination of adsorbent materials. However, nitrogen adsorption reaches limitations when dealing with materials such as molecular sieving carbon with a high degree of ultramicroporosity. In this investigation, methane and carbon dioxide adsorption is explored as a possible alternative to the standard nitrogen probe. Methane and carbon dioxide adsorption equilibria and kinetics are measured in a commercially derived carbon molecular sieve over a range of temperatures. The pore size distribution is determined from the adsorption equilibrium, and the kinetics of adsorption is shown to be Fickian for carbon dioxide and non-Fickian for methane. The non-Fickian response is attributed to transport resistance at the pore mouth experienced by the methane molecules but not by the carbon dioxide molecules. Additionally, the change in the rate of adsorption with loading is characterized by the Darken relation in the case of carbon dioxide diffusion but is greater than that predicted by the Darken relation for methane transport. Furthermore, the proposition of inkbottle-shaped micropores in molecular sieving carbon is supported by the determination of the activation energy for the transport of methane and subsequent sizing of the pore-mouth barrier by molecular potential calculations.
Resumo:
Este trabalho tem como objetivo desenvolver uma metodologia de seletividade cinética, para os pseudocomponentes do petróleo em escoamento gás-liquido em colunas de bolhas usando a Fluidodinâmica Computacional (CFD). Uma geometria cilíndrica de 2,5m de altura e 0,162m de diâmetro foi usada tanto na validação fluidodinâmica com base em dados experimentais da literatura, como na análise cinética do reator operando em dois modos distintos em relação a fase líquida: batelada e contínuo. Todos os casos de estudo operam em regime heterogêneo de escoamento, com velocidade superficial do gás igual a 8 cm/s e diâmetro médio de bolhas de 6 mm. O modelo fluidodinâmico validado apresentou boa concordância com os dados experimentais, sendo empregado como base para a implementação do modelo cinético de rede de Krishna e Saxena (1989). A análise da hidroconversão foi realizada a 371ºC, e os resultados mostraram o comportamento esperado para o processo reativo estudado, definindo-se os tempos (batelada) e posições axiais (contínuo) de coleta ideal para os pseudocomponentes leves. Em síntese, ressaltase o uso da ferramenta CFD no entendimento, desenvolvimento e otimização de processos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68%) and selectivity (100%) for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.
Resumo:
Biocatalysis can be applied in organic synthetic chemistry to counter challenges posed by increased demands towards chemo-, regio- and stereoselectivity, not forgetting the need for greener chemistry. During the last 30 years, biocatalysis with the use of enzymes as chiral catalysts has become more common in chemistry laboratories and industrial processes. In this thesis, the use of lipases as versatile biocatalysts in the acylation of alcohols is examined both in the light of literature examples and four original publications. In the first part of the work presented in this thesis lipases were utilized in two examples concerning secondary alcohols. First, the kinetic resolution of heterocyclic aromatic secondary alcohols through transesterification was thoroughly examined including the studies of competing hydrolysis and esterification reactions. In another example, lipases were utilized in the formation of a dynamic systemic resolution (DSR) process which in turn was used as a developmental tool in the optimization of the dynamic kinetic resolution (DKR) of five heterocyclic aromatic cyanohydrins in one pot for the preparation of cyanohydrin esters as single enantiomers. In the second part of the work, the regio- and stereoselectivity of lipases was used to form sugar conjugates of glyceric and β-amino acids. The primary hydroxyl groups of methyl α-D-galacto-, -gluco- and -mannopyranosides were now acylated trough lipasecatalyzed transesterification and enantioselective lipase-catalyzed ring-opening of β- lactams, respectively.
Resumo:
Selectivity plays a crucial role in the design of enzyme inhibitors as novel antiparasitic agents, particularly in cases where the target enzyme is also present in the human host. Purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive target for the discovery of potential antischistosomal agents. In the present work, kinetic studies were carried out in order to determine the inhibitory potency, mode of action and enzyme selectivity of a series of inhibitors of SmPNP. In addition, crystallographic studies provided important structural insights for rational inhibitor design, revealing consistent structural differences in the binding mode of the inhibitors in the active sites of the SmPNP and human PNP (HsPNP) structures. The molecular information gathered in this work should be useful for future medicinal chemistry efforts in the design of new inhibitors of SmPNP having increased affinity and selectivity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
High density poly(ethylene) has been submitted to thermal degradation alone, and in the presence of silicoaluminophosphate SAPO-37. The processes were carried out in a reactor connected on line to a gas chromatograph/mass spectrometer in order to analyze the evolved products. Polymer degradation was also evaluated by thermogravimetry, from room temperature until 800 degreesC, under nitrogen dynamic atmosphere, with multiple heating rates. From TG curves, the activation energy related to degradation process was calculated using the Flynn and Wall multiple heating rate kinetic model for pure polymer (PE) and for polymer in the presence of catalyst (PE/S37). SAPO-37 showed good selectivity for low molecular mass hydrocarbons in PE catalytic degradation.
Resumo:
The kinetic resolution of (+/-)-mandelonitrile was carried out using lipase from Candida antarctica under conventional condition (orbital shaker) and microwave irradiation in toluene, producing the (S)-mandelonitrile acetate with high selectivity (up to >98% ee, enantiomeric excess). The unreacted (R)-mandelonitrile under microwave irradiation and conventional condition was partially converted into benzaldehyde by spontaneous chemical equilibrium. The (S)-mandelonitrile acetate under microwave irradiation was produced with 92% ee and 35% yield for 8 h of reaction. Conventional transesterification of (+/-)-mandelonitrile in an orbital shaker produced unreacted (R) -mandelonitrile (51% ee) and (S)-mandelonitrile acetate (98% ee) in accordance with Kazlauskas rule for 184 h of reaction.
Resumo:
The kinetic resolution of chiral beta-borylated carboxylic esters via lipase-catalyzed hydrolysis and transesterification reactions was studied. The enantioselective hydrolysis catalyzed by CAL-B furnished the beta-borylated carboxylic acid with reasonable enantiomeric excess (62% ee), while both methyl and ethyl beta-borylated carboxylic esters were recovered with excellent ee (>99%). Meanwhile, the transesterification reaction of beta-borylated carboxylic esters and several alcohols, catalyzed by CAL-B, only indicated a high selectivity when ethanol and methyl-(beta-pinacolylboronate)-butanoate were used as substrates, which gave ethyl-(beta-pinacolylboronate)-butanoate with >99% ee. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The kinetic resolution of (±)-mandelonitrile was carried out using lipase from Candida antarctica under conventional condition (orbital shaker) and microwave irradiation in toluene, producing the (S)-mandelonitrile acetate with high selectivity (up to > 98% ee, enantiomeric excess). The unreacted (R)-mandelonitrile under microwave irradiation and conventional condition was partially converted into benzaldehyde by spontaneous chemical equilibrium. The (S)-mandelonitrile acetate under microwave irradiation was produced with 92% ee and 35% yield for 8 h of reaction. Conventional transesterification of (±)-mandelonitrile in an orbital shaker produced unreacted (R)-mandelonitrile (51% ee) and (S)-mandelonitrile acetate (98% ee) in accordance with Kazlauskas rule for 184 h of reaction.
Resumo:
Motion is a powerful cue for figure-ground segregation, allowing the recognition of shapes even if the luminance and texture characteristics of the stimulus and background are matched. In order to investigate the neural processes underlying early stages of the cue-invariant processing of form, we compared the responses of neurons in the striate cortex (V1) of anaesthetized marmosets to two types of moving stimuli: bars defined by differences in luminance, and bars defined solely by the coherent motion of random patterns that matched the texture and temporal modulation of the background. A population of form-cue-invariant (FCI) neurons was identified, which demonstrated similar tuning to the length of contours defined by first- and second-order cues. FCI neurons were relatively common in the supragranular layers (where they corresponded to 28% of the recorded units), but were absent from layer 4. Most had complex receptive fields, which were significantly larger than those of other V1 neurons. The majority of FCI neurons demonstrated end-inhibition in response to long first- and second-order bars, and were strongly direction selective, Thus, even at the level of V1 there are cells whose variations in response level appear to be determined by the shape and motion of the entire second-order object, rather than by its parts (i.e. the individual textural components). These results are compatible with the existence of an output channel from V1 to the ventral stream of extrastriate areas, which already encodes the basic building blocks of the image in an invariant manner.
Resumo:
We report kinetic molecular sieving of hydrogen and deuterium in zeolite rho at low temperatures, using atomistic molecular dynamics simulations incorporating quantum effects via the Feynman-Hibbs approach. We find that diffusivities of confined molecules decrease when quantum effects are considered, in contrast with bulk fluids which show an increase. Indeed, at low temperatures, a reverse kinetic sieving effect is demonstrated in which the heavier isotope, deuterium, diffuses faster than hydrogen. At 65 K, the flux selectivity is as high as 46, indicating a good potential for isotope separation.
Resumo:
Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes.
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.
Resumo:
Lipase from Burkholderia cepacia immobilized on superparamagnetic nanoparticles using adsorption and chemisorption methodologies was efficiently applied as recyclable biocatalyst in the enzymatic kinetic resolution of (RS)-1-(phenyl)ethanols via transesterification reactions. (R)-Esters and the remaining (S)-alcohols were obtained with excellent enantiomeric excess (> 99%), which corresponds to a perfect process of enzymatic kinetic resolution (conversion 50%, E > 200). The transesterification reactions catalysed with B. cepacia lipase immobilized by the glutaraldehyde method showed the best results in terms of reusability, preserving the enzyme activity (conversion 50%, E > 200) for at least 8 successive cycles.