136 resultados para Kinesiology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The poster was presented at the 2016 Tri-Chapter Meeting (MACMLA, NY-NJ and PHIL Chapters), The 3Ls - Librarians, Leadership and Learning on September 25, 2016 in Philadelphia, PA (http://macmla.libguides.com/tri-chapter2016-posters).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the advent of new tools for musculoskeletal simulation has increased the potential for significantly improving the ergonomic design process and ergonomic assessment of design. In this paper we investigate the use of one such tool, ‘The AnyBody Modeling System’, applied to solve a one-parameter and yet, complex ergonomic design problem. The aim of this paper is to investigate the potential of computer-aided musculoskeletal modelling in the ergonomic design process, in the same way as CAE technology has been applied to engineering design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The ability to regulate joint stiffness and coordinate movement during landing when impaired by muscle fatigue has important implications for knee function. Unfortunately, the literature examining fatigue effects on landing mechanics suffers from a lack of consensus. Inconsistent results can be attributed to variable fatigue models, as well as grouping variable responses between individuals when statistically detecting differences between conditions. There remains a need to examine fatigue effects on knee function during landing with attention to these methodological limitations. Aim: The purpose of this study therefore, was to examine the effects of isokinetic fatigue on pre-impact muscle activity and post-impact knee mechanics during landing using singlesubject analysis. Methodology: Sixteen male university students (22.6+3.2 yrs; 1.78+0.07 m; 75.7+6.3 kg) performed maximal concentric and eccentric knee extensions in a reciprocal manner on an isokinetic dynamometer and step-landing trials on 2 occasions. On the first occasion each participant performed 20 step-landing trials from a knee-high platform followed by 75 maximal contractions on the isokinetic dynamometer. The isokinetic data was used to calculate the operational definition of fatigue. On the second occasion, with a minimum rest of 14 days, participants performed 2 sets of 20 step landing trials, followed by isokinetic exercise until the operational definition of fatigue was met and a final post-fatigue set of 20 step-landing trials. Results: Single-subject analyses revealed that isokinetic fatigue of the quadriceps induced variable responses in pre impact activation of knee extensors and flexors (frequency, onset timing and amplitude) and post-impact knee mechanics(stiffness and coordination). In general however, isokinetic fatigue induced sig nificant (p<0.05) reductions in quadriceps activation frequency, delayed onset and increased amplitude. In addition, knee stiffness was significantly (p<0.05) increased in some individuals, as well as impaired sagittal coordination. Conclusions: Pre impact activation and post-impact mechanics were adjusted in patterns that were unique to the individual, which could not be identified using traditional group-based statistical analysis. The results suggested that individuals optimised knee function differently to satisfy competing demands, such as minimising energy expenditure, as well as maximising joint stability and sensory information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Evidence concerning the alteration of knee function during landing suffers from a lack of consensus. This uncertainty can be attributed to methodological flaws, particularly in relation to the statistical analysis of variable human movement data. Aim: The aim of this study was to compare single-subject and group analysis in quantifying alterations in the magnitude and within-participant variability of knee mechanics during a step landing task. Methods: A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials, each trial separated by a 1-minute rest. The magnitude and within-participant variability of sagittal knee stiffness and coordination of the landing leg during the immediate postimpact period were evaluated. Coordination of the knee was quantified in the sagittal plane by calculating the mean absolute relative phase of sagittal shank and thigh motion (MARP1) and between knee rotation and knee flexion (MARP2). Changes across trials were compared between both group and single-subject statistical analyses. Results: The group analysis detected significant reductions in MARP1 magnitude. However, the single-subject analyses detected changes in all dependent variables, which included increases in variability with task repetition. Between-individual variation was also present in the timing, size and direction of alterations to task repetition. Conclusion: The results have important implications for the interpretation of existing information regarding the adaptation of knee mechanics to interventions such as fatigue, footwear or landing height. It is proposed that a familiarisation session be incorporated in future experiments on a single-subject basis prior to an intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine if athletes with a history of hamstring strain injury display lower levels of surface EMG (sEMG) activity and median power frequency in the previously injured hamstring muscle during maximal voluntary contractions. Recreational athletes were recruited, 13 with a history of unilateral hamstring strain injury and 15 without prior injury. All athletes undertook isokinetic dynamometry testing of the knee flexors and sEMG assessment of the biceps femoris long head (BF) and medial hamstrings (MH) during concentric and eccentric contractions at ± 180 and ± 600.s-1. The knee flexors on the previously injured limb were weaker at all contraction speeds compared to the uninjured limb (+1800.s-1 p = 0.0036; +600.s-1 p = 0.0013; -600.s-1 p = 0.0007; -1800.s-1 p = 0.0007) whilst sEMG activity was only lower in the BF during eccentric contractions (-600.s-1 p = 0.0025; -1800.s-1 p = 0.0003). There were no between limb differences in MH sEMG activity or median power frequency from either BF or MH in the injured group. The uninjured group showed no between limb differences in any of the tested variables. Secondary analysis comparing the between limb difference in the injured and the uninjured groups, confirmed that previously injured hamstrings were mostly weaker (+1800.s-1 p = 0.2208; +600.s-1 p = 0.0379; -600.s-1 p = 0.0312; -1800.s-1 p = 0.0110) and that deficits in sEMG were confined to the BF during eccentric contractions (-600.s-1 p = 0.0542; -1800.s-1 p = 0.0473) Previously injured hamstrings were weaker and BF sEMG activity was lower than the contralateral uninjured hamstring. This has implications for hamstring strain injury prevention and rehabilitation which should consider altered neural function following hamstring strain injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamstring strain injuries are amongst the most common and problematic injuries in a wide range of sports that involve high speed running. The comparatively high rate of hamstring injury recurrence is arguably the most concerning aspect of these injuries. A number of modifiable and nonmodifiable risk factors are proposed to predispose athletes to hamstring strains. Potentially, the persistence of risk factors and the development of maladaptations following injury may explain injury recurrence. Here, the role of neuromuscular inhibition following injury is discussed as a potential mechanism for several maladaptations associated with hamstring re-injury. These maladaptations include eccentric hamstring weakness, selective hamstring atrophy and shifts in the knee flexor torque-joint angle relationship. Current evidence indicates that athletes return to competition after hamstring injury having developed maladaptations that predispose them to further injury. When rehabilitating athletes to return to competition following hamstring strain injury, the role of neuromuscular inhibition in re-injury should be considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. AIM: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed no change following intermittent running. CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Intermittent running has been shown to result in preferential reductions in eccentric hamstring strength, which increase the risk of sustaining a HSI. The eccentric specific nature of this decline in hamstring function implicates central mechanisms, as peripheral fatigue mechanisms tend to impact upon both concentric and eccentric contractions modes. However, neural function of the hamstrings, such as the median power frequency (MPF) of the surface electromyography signal has yet to be examined in the fatigued hamstring following intermittent sprint running. AIM: To determine the impact of fatigue induced by intermittent sprinting on the MPF of the medial and lateral hamstring muscles. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±180.s-1 and ±60.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused a significant reduction in eccentric knee flexor strength (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) but not concentric strength (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, MPF of the lateral hamstrings showed a significant decline eccentrically (0.86; 95% CI = 0.59 to 1.54; P=0.038) and concentrically (0.76; 95%CI = 0.66 to 0.83; P=0.039). Similar declines in MPF were also noted in the medial hamstrings eccentrically (1.54; 95% CI = 0.59 to 7.9; P=0.005) and concentrically (1.18; 95% CI = 0.44 to 6.8; P=0.040). CONCLUSION: Whilst sprint running induced fatigue led to a eccentric specific reduction in knee flexor torque, MPF was suppressed across both contraction modes. This would indicate that factors associated with the decline in MPF do not appear to explain the contraction mode-specific loss of strength after intermittent sprints. This would implicate other central mechanisms, such as declines in voluntary activation, in explaining the eccentric specific decline in strength seen following sprint running.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Hamstring strain injuries (HSI) are prevalent in sport and re-injury rates have been high for many years. Maladaptation following HSI are implicated in injury recurrence however nervous system function following HSI has received little attention. Aim: To determine if recreational athletes with a history of unilateral HSI, who have returned to training and competition, will exhibit lower levels of voluntary activation (VA) and median power frequency (MPF) in the previously injured limb compared to the uninjured limb at long muscle lengths. Methods: Twenty-eight recreational athletes were recruited. Of these, 13 athletes had a history of unilateral HSI and 15 had no history of HSI. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during concentric and eccentric contractions at ± 180 and ± 60deg/s. Results: The previously injured limb was weaker at all contraction speeds compared to the uninjured limb (+180deg/s mean difference(MD) = 9.3Nm, p = 0.0036; +60deg/s MD = 14.0Nm, p = 0.0013; -60deg/s MD = 18.3Nm, p = 0.0007; -180deg/s MD = 20.5Nm, p = 0.0007) whilst VA was only lower in the biceps femoris long head during eccentric contractions (-60deg/s MD = 0.13, p = 0.0025; -180deg/s MD = 0.13, p = 0.0003). There were no between limb differences in medial hamstring VA or MPF from either biceps femoris long head or medial hamstrings in the injured group. The uninjured group showed no between limb differences with any of the tested variables. Conclusion: Previously injured hamstrings were weaker than the contralateral uninjured hamstring at all tested speeds and contraction modes. During eccentric contractions biceps femoris long head VA was lower in the previously injured limb suggesting neural control of biceps femoris long head may be altered following HSI. Current rehabilitation practices have been unsuccessful in restoring strength and VA following HSI. Restoration of these markers should be considered when determining the success of rehabilitation from HSI. Further investigations are required to elucidate the full impact of lower levels of biceps femoris long head VA following HSI on rehabilitation outcomes and re-injury risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is much for non-Indigenous researchers to consider when researching in Indigenous contexts. This paper is a story of discovery for two researchers working on a project with the Indigenous Sports Program section of the Australian Sports Commission. It documents the slow, meticulous and sometimes clumsy steps taken to gain access to communities and conduct research guided by a social justice ethic. The research was successful in that eventually it was possible to develop the trust of individuals and some of the Indigenous communities more broadly, so that information could be gathered and given within the context of shared understandings and mutual interest. However, it is the turbulent journey, filled as it is, with latent tendencies, privileged assumptions and eventually reflexive readings of the data, which remains the focus of this paper. Tentative recommendations are offered to those wishing to advance this politically and epistemologically challenging approach to culturally based research

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The purpose of the present study was to analyze the neuromuscular responses during the performance of a sit to stand [STS] task in water and on dry land. SCOPE: 10 healthy subjects, five males and five females were recruited for study. Surface electromyography sEMG was used for lower limb and trunk muscles maximal voluntarty contraction [MVC] and during the STS task. RESULTS: Muscle activity was significantly higher on dry land than in water normalized signals by MVC from the quadriceps-vastus medialis [17.3%], the quadriceps - rectus femoris [5.3%], the long head of the biceps femoris [5.5%], the tibialis anterior [13.9%], the gastrocnemius medialis [3.4%], the soleus [6.2%]. However, the muscle activity was higher in water for the rectus abdominis [-26.6%] and the erector spinae [-22.6%]. CONCLUSIONS: This study for the first time describes the neuromuscular responses in healthy subjects during the performance of the STS task in water. The differences in lower limb and trunk muscle activity should be considered when using the STS movement in aquatic rehabilitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian Longitudinal Study on Women’s Health (ALSWH) commenced in Australia in 1996 when researchers recruited approximately 40,000 women in three birth cohorts: 1973–1978, 1946–1951, and 1921–1926. Since then participants have completed surveys on a wide range of health issues, at approximately three-year intervals. This overview describes changes in physical activity (PA) over time in the mid-age and older ALSWH cohorts, and summarizes the findings of studies published to date on the determinants of PA, and its associated health outcomes in Australian women. The ALSWH data show a significant increase in PA during mid-age, and a rapid decline in activity levels when women are in their 80s. The study has demonstrated the importance of life stages and key life events as determinants of activity, the additional benefits of vigorous activity for mid-age women, and the health benefits of ‘only walking’ for older women. ALSWH researchers have also drawn attention to the benefits of activity in terms of a wide range of physical and mental health outcomes, as well as overall vitality and well-being. The data indicate that maintaining a high level of PA throughout mid and older age will not only reduce the risk of premature death, but also significantly extend the number of years of healthy life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the effect of crank configuration on muscle activity and torque production during submaximal arm crank ergometry. Thirteen non-specifically trained male participants volunteered. During the research trials they completed a warm-up at 15 W before two 3-min exercise stages were completed at 50 and 100 W; subjects used either a synchronous or asynchronous pattern of cranking. During the final 30-s of each submaximal exercise stage electromyographic and torque production data were collected. After the data had been processed each parameter was analysed using separate 2-way ANOVA tests with repeated measures. The activity of all muscles increased in line with external workload, although a shift in the temporal pattern of muscle activity was noted between crank configurations. Patterns of torque production during asynchronous and synchronous cranking were distinct. Furthermore, peak, minimum and delta (peak-minimum) torque values were different (P < 0.05) between crank configurations at both workloads. For example, at 100 W, peak torque using synchronous [19.6 (4.3) Nm] cranking was higher (P < 0.05) compared to asynchronous [16.8 (1.6) Nm] cranking. In contrast minimum torque was lower (P < 0.05) at 100 W using synchronous [4.8 (1.7) Nm] compared to asynchronous [7.3 (1.2) Nm] cranking. There was a distinct bilateral asymmetry in torque production during asynchronous cranking with the dominant transmitting significantly more force to the crank arm. Taken together, these preliminary data demonstrate the complex nature of muscle activity during arm crank ergometry performed with an asynchronous or synchronous crank set-up. Further work is required to determine how muscle activity (EMG activity) and associated patterns of torque production influence physiological responses and functional capacity during arm crank ergometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past twenty years an increasing number of Global South nations have vied for the rights to host prestigious and expensive sport mega events. This trend requires significant reflection given the enormous economic costs of these events, which often produce little capital gain for the host nation (Whitson & Horne, 2006). Furthermore, sport mega events are often utilized for their symbolic capital (Belanger, 2009), which sometimes manifests through forcing people from their land for the sake of “beautification” (Davis, 2006). In this project, then, I asked how technologies of power were utilized by FIFA, corporate stakeholders, and the South African government to control people who were marginal to, or impeded the success of, the World Cup in Nelspruit, South Africa. This project consisted of two parts: the first involved constructing a theoretical framework for better understanding power as it operates through sport mega events in general. To this end I employed Marxian notions of the ordering of physical space, Foucauldian conceptions of sovereignty and governmentality, and Agamben’s (1998) state of exception to determine how particular bodies are constituted and controlled through sport mega events. In the second part, I applied this theoretical framework to the events in South Africa to better elucidate how people became displaced and killed because of the 2010 FIFA World Cup. I used South African popular news and documentaries as empirical evidence and conducted a discursive analysis of said news media. Through this coverage it became apparent that the mega event created the conditions in which new forms of rogue sovereign partnerships could arise through a historically and spatially contingent process of capitalism. The rogue sovereigns’ para-juridico-political orders, the discourses and practices of accumulation by dispossession as a tactic and effect of govermentality, and other historical non-capital subjectivities such as racial identity, all contributed to constituting Agamben’s state of exception in which people could be displaced, killed or left to die in the events surrounding the World Cup.