993 resultados para Kinematic system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabajo se centra en la construcción de la parte física del personaje virtual. El desarrollo muestra téecnicas de modelado 3D, cinemática y animación usadas para la creación de personajes virtuales. Se incluye además una implementación que está dividida en: modelado del personaje virtual, creación de un sistema de cinemática inversa y la creación de animaciones utilizando el sistema de cinemática. Primero, crear un modelo 3D exacto al diseño original, segundo, el desarrollo de un sistema de cinemática inversa que resuelva con exactitud las posiciones de las partes articuladas que forman el personaje virtual, y tercero, la creación de animaciones haciendo uso del sistema de cinemática para conseguir animaciones fluidas y depuradas. Como consecuencia, se ha obtenido un componente 3D animado, reutilizable, ampliable, y exportable a otros entornos virtuales. ---ABSTRACT---This article is pointed in the making of the physical part of the virtual character. Development shows modeling 3D, kinematic and animation techniques used for create the virtual character. In addition, an implementation is included, and it is divided in: to model the 3D character, to create an inverse kinematics system, and to create animations using a kinematic system. First, creating an exact 3D model from the original design, second, developing an inverse kinematics system that resolves the positions of the articulated pieces that compose the virtual character, and third, creating animation using the inverse kinematics system to get fluid and refined animations in realtime. As consequence, a 3D animated, reusable, extendable and to other virtual environments exportable component has been obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motor dysfunction is consistently reported but understudied in schizophrenia. It has been hypothesized that this abnormality may reflect a neuro-developmental disorder underlying this illness. The main goal of this study was to analyze movement patterns used by participants with schizophrenia and healthy controls during overarm throwing performance, using a markerless motion capture system. Thirteen schizophrenia patients and 16 healthy control patients performed the overarm throwing task in a markerless motion capture system. Participants were also examined for the presence of motor neurological soft signs (mNSS) using the Brief Motor Scale. Schizophrenia patients demonstrated a less developed movement pattern with low individualization of components compared to healthy controls. The schizophrenia group also displayed a higher incidence of mNSS. The presence of a less mature movement pattern can be an indicator of neuro-immaturity and a marker for atypical neurological development in schizophrenia. Our findings support the understanding of motor dysfunction as an intrinsic part of the disorder of schizophrenia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An adaptive control damping the forced vibration of a car while passing along a bumpy road is investigated. It is based on a simple kinematic description of the desired behavior of the damped system. A modified PID controller containing an approximation of Caputo’s fractional derivative suppresses the high-frequency components related to the bumps and dips, while the low frequency part of passing hills/valleys are strictly traced. Neither a complete dynamic model of the car nor ’a priori’ information on the surface of the road is needed. The adaptive control realizes this kinematic design in spite of the existence of dynamically coupled, excitable internal degrees of freedom. The method is investigated via Scicos-based simulation in the case of a paradigm. It was found that both adaptivity and fractional order derivatives are essential parts of the control that can keep the vibration of the load at bay without directly controlling its motion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for tt̄ events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb-1 collected by the CMS experiment in pp collisions at √s = 7 TeV. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of Mt = 173.9 ± 0.9 (stat)+1.7 -2.1(syst.) GeV is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics. © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Restoring a correct implant kinematics and providing a good ligament balance and patellar tracking is mandatory to improve clinical and functional outcome after a Total Knee Replacement. Surgical navigation systems are a reliable and accurate tool to help the surgeon in achieving these goals. The aim of the present study was to use navigation system with an intra-operative surgical protocol to evaluate and determine an optimal implant kinematics during a Total Knee Replacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Central cord syndrome (CCS) is considered the most common incomplete spinal cord injury (SCI). Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG), walking both at a self-selected speed and at the same speed. Methods: Twelve CCS patients and a CG of twenty subjects were analyzed. Kinematic data were obtained using a three-dimensional motion analysis system with two scanner units. The CG were asked to walk at two different speeds, at a self-selected speed and at a slower one, similar to the mean gait speed previously registered in the CCS patient group. Temporal, spatial variables and kinematic variables (maximum and minimum lower limb joint angles throughout the gait cycle in each plane, along with the gait cycle instants of occurrence and the joint range of motion ROM) were compared between the two groups walking at similar speeds. Results: The kinematic parameters were compared when both groups walked at a similar speed, given that there was a significant difference in the self-selected speeds (p < 0.05). Hip abduction and knee flexion at initial contact, as well as minimal knee flexion at stance, were larger in the CCS group (p < 0.05). However, the range of knee and ankle motion in the sagittal plane was greater in the CG group (p < 0.05). The maximal ankle plantar-flexion values in stance phase and at toe off were larger in the CG (p < 0.05). Conclusions: The gait pattern of CCS patients showed a decrease of knee and ankle sagittal ROM during level walking and an increase in hip abduction to increase base of support. The findings of this study help to improve the understanding how CCS affects gait changes in the lower limbs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. TWA22 was initially regarded as a member of the TW Hydrae association (TWA). In addition to being one of the youngest (approximate to 8 Myr) and nearest (approximate to 20 pc) stars to Earth, TWA22 has proven to be very interesting after being resolved as a tight, very low-mass binary. This binary can serve as a very useful dynamical calibrator for pre-main sequence evolutionary models. However, its membership in the TWA has been recently questioned despite due to the lack of accurate kinematic measurements. Aims. Based on proper motion, radial velocity, and trigonometric parallax measurements, we aim here to re-analyze the membership of TWA22 to young, nearby associations. Methods. Using the ESO NTT/SUSI2 telescope, we observed TWA22 AB during 5 different observing runs over 1.2 years to measure its trigonometric parallax and proper motion. This is a part of a larger project measuring trigonometric parallaxes and proper motions of most known TWA members at a sub-milliarcsec level. HARPS at the ESO 3.6 m telescope was also used to measure the system's radial velocity over 2 years. Results. We report an absolute trigonometric parallax of TWA22 AB, pi = 57.0 +/- 0.7 mas, corresponding to a distance 17.5 +/- 0.2 pc from Earth. Measured proper motions of TWA 22AB are mu(alpha) cos(delta) = -175.8 +/- 0.8 mas/yr and mu delta = -21.3 +/- 0.8 mas/yr. Finally, from HARPS measurements, we obtain a radial velocity V(rad) = 14.8 +/- 2.1 km s(-1). Conclusions. A kinematic analysis of TWA22 AB space motion and position implies that a membership of TWA22 AB to known young, nearby associations can be excluded except for the beta Pictoris and TW Hydrae associations. Membership probabilities based on the system's Galactic space motion and/or the trace-back technique support a higher chance of being a member to the beta Pictoris association. Membership of TWA22 in the TWA cannot be fully excluded because of large uncertainties in parallax measurements and radial velocities and to the uncertain internal velocity dispersion of its members.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Electromyography (EMG) is an important tool for gait analyzes and disorders diagnoses. Traditional methods involve equipment that can disturb the analyses, being gradually substituted by different approaches, like wearable and wireless systems. The cable replacement for autonomous systems demands for technologies capable of meeting the power constraints. This work presents the development of an EMG and kinematic data capture wireless module, designed taking into account power consumption issues. This module captures and converts the analog myoeletric signal to digital, synchronously with the capture of kinetic information. Both data are time multiplexed and sent to a PC via Bluetooth link. The work carried out comprised the development of the hardware, the firmware and a graphical interface running in an external PC. The hardware was developed using the PIC18F14K22, a low power family of microcontrollers. The link was established via Bluetooth, a protocol designed for low power communication. An application was also developed to recover and trace the signal to a Graphic User Interface (GUI), coordinating the message exchange with the firmware. Results were obtained which allowed validating the conceived system in static and with the subject performing short movements. Although it was not possible to perform the tests within more dynamic movements, it is shown that it is possible to capture, transmit and display the captured data as expected. Some suggestions to improve the system performance also were made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter presents a general view of multibody system concept and definition by describing the main features associated with spatial systems. The mechanical components, which can be modeled as rigid or flexible, are constrained by kinematic pair of different types. Additionally, the bodies can be actuated upon by force elements and external forces due to interaction with environment. This chapter also presents some examples of application of multibody systems that can include automotive vehicles, mechanisms, robots and biomechanical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new statistical parallax method using the Maximum Likelihood principle is presented, allowing the simultaneous determination of a luminosity calibration, kinematic characteristics and spatial distribution of a given sample. This method has been developed for the exploitation of the Hipparcos data and presents several improvements with respect to the previous ones: the effects of the selection of the sample, the observational errors, the galactic rotation and the interstellar absorption are taken into account as an intrinsic part of the formulation (as opposed to external corrections). Furthermore, the method is able to identify and characterize physically distinct groups in inhomogeneous samples, thus avoiding biases due to unidentified components. Moreover, the implementation used by the authors is based on the extensive use of numerical methods, so avoiding the need for simplification of the equations and thus the bias they could introduce. Several examples of application using simulated samples are presented, to be followed by applications to real samples in forthcoming articles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes a project begun in January 1989 and completed December 1990, with the primary objective of obtaining sufficiently accurate horizontal and vertical control by using Global Positioning System (GPS) for highway applications. The ISU research group studied the operations of the Ashtech GPS receiver in static, pseudo-static, kinematic, and pseudo-kinematic modes. By using the Electronic Distance Measuring Instrument (EDMI) Calibration Baseline at ISU, the GPS receiver was tested for distance measurement accuracy. It was found that GPS measurements differed from the baseline distance by about 5.3 mm. Four projects were undertaken to further evaluate and improve the horizontal as well as the vertical accuracies of the GPS receiver -- (1) The Campus Project: with all points concentrated within a one-mile radius; (2) The Des Moines Project: a typical DOT project with all the points within a five-mile radius; (3) The Iowa Project: with all points within a 100-mile radius in the state of Iowa; and (4) The Mustang Project: an extension of the Iowa project, including a typical DOT project of about 10 miles within the inner 30 mile radius of the Iowa project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Quantification of daily upper-limb activity is a key determinant in evaluation of shoulder surgery. For a number of shoulder diseases, problem in performing daily activities have been expressed in terms of upper-limb usage and non-usage. Many instruments measure upper-limb movement but do not focus on the differentiations between the use of left or right shoulder. Several methods have been used to measure it using only accelerometers, pressure sensors or video-based analysis. However, there is no standard or widely used objective measure for upper-limb movement. We report here on an objective method to measure the movement of upper-limb and we examined the use of 3D accelerometers and 3D gyroscopes for that purpose. Methods. We studied 8 subjects with unilateral pathological shoulder (8 rotator cuff disease: 53 years old ± 8) and compared them to 18 control subjects (10 right handed, 8 left handed: 32 years old ± 8, younger than the patient group to be almost sure they don_t have any unrecognized shoulder pathology). The Simple Shoulder Test (SST) and Disabilities of the Arm and Shoulder Score (DASH) questionnaires were completed by each subject. Two modules with 3 miniature capacitive gyroscopes and 3 miniature accelerometers were fixed by a patch on the dorsal side of the distal humerus, and one module with 3 gyroscopes and 3 accelerometers were fixed on the thorax. The subject wore the system during one day (8 hours), at home or wherever he/she went. We used a technique based on the 3D acceleration and the 3D angular velocities from the modules attached on the humerus. Results. As expected, we observed that for the stand and sit postures the right side is more used than the left side for a healthy right-handed person(idem on the left side for a healthy left-handed person). Subjects used their dominant upper-limb 18% more than the non-dominant upper-limb. The measurements on patients in daily life have shown that the patient has used more his non affected and non dominant side during daily activity if the dominant side = affected shoulder. If the dominant side affected shoulder, the difference can be showed only during walking period. Discussion-Conclusion. The technique developed and used allowed the quantification of the difference between dominant and non dominant side, affected and unaffected upper-limb activity. These results were encouraging for future evaluation of patients with shoulder injuries, before and after surgery. The feasibility and patient acceptability of the method using body fixed sensors for ambulatory evaluation of upper limbs kinematics was shown.