782 resultados para Kinect sensor
Resumo:
Dissertação de mestrado em Engenharia Eletrónica Industrial e Computadores (área de especialização em Robótica)
Resumo:
El reconeixement dels gestos de la mà (HGR, Hand Gesture Recognition) és actualment un camp important de recerca degut a la varietat de situacions en les quals és necessari comunicar-se mitjançant signes, com pot ser la comunicació entre persones que utilitzen la llengua de signes i les que no. En aquest projecte es presenta un mètode de reconeixement de gestos de la mà a temps real utilitzant el sensor Kinect per Microsoft Xbox, implementat en un entorn Linux (Ubuntu) amb llenguatge de programació Python i utilitzant la llibreria de visió artifical OpenCV per a processar les dades sobre un ordinador portàtil convencional. Gràcies a la capacitat del sensor Kinect de capturar dades de profunditat d’una escena es poden determinar les posicions i trajectòries dels objectes en 3 dimensions, el que implica poder realitzar una anàlisi complerta a temps real d’una imatge o d’una seqüencia d’imatges. El procediment de reconeixement que es planteja es basa en la segmentació de la imatge per poder treballar únicament amb la mà, en la detecció dels contorns, per després obtenir l’envolupant convexa i els defectes convexos, que finalment han de servir per determinar el nombre de dits i concloure en la interpretació del gest; el resultat final és la transcripció del seu significat en una finestra que serveix d’interfície amb l’interlocutor. L’aplicació permet reconèixer els números del 0 al 5, ja que s’analitza únicament una mà, alguns gestos populars i algunes de les lletres de l’alfabet dactilològic de la llengua de signes catalana. El projecte és doncs, la porta d’entrada al camp del reconeixement de gestos i la base d’un futur sistema de reconeixement de la llengua de signes capaç de transcriure tant els signes dinàmics com l’alfabet dactilològic.
Resumo:
El reconeixement dels gestos de la mà (HGR, Hand Gesture Recognition) és actualment un camp important de recerca degut a la varietat de situacions en les quals és necessari comunicar-se mitjançant signes, com pot ser la comunicació entre persones que utilitzen la llengua de signes i les que no. En aquest projecte es presenta un mètode de reconeixement de gestos de la mà a temps real utilitzant el sensor Kinect per Microsoft Xbox, implementat en un entorn Linux (Ubuntu) amb llenguatge de programació Python i utilitzant la llibreria de visió artifical OpenCV per a processar les dades sobre un ordinador portàtil convencional. Gràcies a la capacitat del sensor Kinect de capturar dades de profunditat d’una escena es poden determinar les posicions i trajectòries dels objectes en 3 dimensions, el que implica poder realitzar una anàlisi complerta a temps real d’una imatge o d’una seqüencia d’imatges. El procediment de reconeixement que es planteja es basa en la segmentació de la imatge per poder treballar únicament amb la mà, en la detecció dels contorns, per després obtenir l’envolupant convexa i els defectes convexos, que finalment han de servir per determinar el nombre de dits i concloure en la interpretació del gest; el resultat final és la transcripció del seu significat en una finestra que serveix d’interfície amb l’interlocutor. L’aplicació permet reconèixer els números del 0 al 5, ja que s’analitza únicament una mà, alguns gestos populars i algunes de les lletres de l’alfabet dactilològic de la llengua de signes catalana. El projecte és doncs, la porta d’entrada al camp del reconeixement de gestos i la base d’un futur sistema de reconeixement de la llengua de signes capaç de transcriure tant els signes dinàmics com l’alfabet dactilològic.
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor.
Resumo:
Human-Computer Interaction have been one of the main focus of the technological community, specially the Natural User Interfaces (NUI) field of research as, since the launch of the Kinect Sensor, the goal to achieve fully natural interfaces just got a lot closer to reality. Taking advantage of this conditions the following research work proposes to compute the hand skeleton in order to recognize Sign Language Shapes. The proposed solution uses the Kinect Sensor to achieve a good segmentation and image analysis algorithms to extend the skeleton from the extraction of high-level features. In order to recognize complex hand shapes the current research work proposes the redefinition of the hand contour making it immutable to translation, rotation and scaling operations, and a set of tools to achieve a good recognition. The validation of the proposed solution extended the Kinects Software Development Kit to allow the developer to access the new set of inferred points and created a template-matching based platform that uses the contour to define the hand shape, this prototype was tested in a set of predefined conditions and showed to have a good success ration and has proven to be eligible for real-time scenarios.
Resumo:
Sign language is the form of communication used by Deaf people, which, in most cases have been learned since childhood. The problem arises when a non-Deaf tries to contact with a Deaf. For example, when non-Deaf parents try to communicate with their Deaf child. In most cases, this situation tends to happen when the parents did not have time to properly learn sign language. This dissertation proposes the teaching of sign language through the usage of serious games. Currently, similar solutions to this proposal do exist, however, those solutions are scarce and limited. For this reason, the proposed solution is composed of a natural user interface that is intended to create a new concept on this field. The validation of this work, consisted on the implementation of a serious game prototype, which can be used as a source for learning (Portuguese) sign language. On this validation, it was first implemented a module responsible for recognizing sign language. This first stage, allowed the increase of interaction and the construction of an algorithm capable of accurately recognizing sign language. On a second stage of the validation, the proposal was studied so that the pros and cons can be determined and considered on future works.
Resumo:
La marche occupe un rôle important dans la vie quotidienne. Ce processus apparaît comme facile et naturel pour des gens en bonne santé. Cependant, différentes sortes de maladies (troubles neurologiques, musculaires, orthopédiques...) peuvent perturber le cycle de la marche à tel point que marcher devient fastidieux voire même impossible. Ce projet utilise l'application de Poincaré pour évaluer l'asymétrie de la marche d'un patient à partir d'une carte de profondeur acquise avec un senseur Kinect. Pour valider l'approche, 17 sujets sains ont marché sur un tapis roulant dans des conditions différentes : marche normale et semelle de 5 cm d'épaisseur placée sous l'un des pieds. Les descripteurs de Poincaré sont appliqués de façon à évaluer la variabilité entre un pas et le cycle complet de la marche. Les résultats montrent que la variabilité ainsi obtenue permet de discriminer significativement une marche normale d'une marche avec semelle. Cette méthode, à la fois simple à mettre en oeuvre et suffisamment précise pour détecter une asymétrie de la marche, semble prometteuse pour aider dans le diagnostic clinique.
Resumo:
The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed in two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. Multiresolution reconstruction methods can generate polygonal meshes in different levels of detail and, to improve the response time of a computer program, distant objects can be represented with few details, while more detailed models are used in closer objects. This work presents a new approach to multiresolution surface reconstruction, particularly interesting to noisy and low definition data, for example, point clouds captured with Kinect sensor
Resumo:
The integration of remote monitoring techniques at different scales is of crucial importance for monitoring of volcanoes and assessment of the associated hazard. In this optic, technological advancement and collaboration between research groups also play a key role. Vhub is a community cyberinfrastructure platform designed for collaboration in volcanology research. Within the Vhub framework, this dissertation focuses on two research themes, both representing novel applications of remotely sensed data in volcanology: advancement in the acquisition of topographic data via active techniques and application of passive multi-spectral satellite data to monitoring of vegetated volcanoes. Measuring surface deformation is a critical issue in analogue modelling of Earth science phenomena. I present a novel application of the Microsoft Kinect sensor to measurement of vertical and horizontal displacements in analogue models. Specifically, I quantified vertical displacement in a scaled analogue model of Nisyros volcano, Greece, simulating magmatic deflation and inflation and related surface deformation, and included the horizontal component to reconstruct 3D models of pit crater formation. The detection of active faults around volcanoes is of importance for seismic and volcanic hazard assessment, but not a simple task to be achieved using analogue models. I present new evidence of neotectonic deformation along a north-south trending fault from the Mt Shasta debris avalanche deposit (DAD), northern California. The fault was identified on an airborne LiDAR campaign of part of the region interested by the DAD and then confirmed in the field. High resolution LiDAR can be utilized also for geomorphological assessment of DADs, and I describe a size-distance analysis to document geomorphological aspects of hummock in the Shasta DAD. Relating the remote observations of volcanic passive degassing to conditions and impacts on the ground provides an increased understanding of volcanic degassing and how satellite-based monitoring can be used to inform hazard management strategies in nearreal time. Combining a variety of satellite-based spectral time series I aim to perform the first space-based assessment of the impacts of sulfur dioxide emissions from Turrialba volcano, Costa Rica, on vegetation in the surrounding environment, and establish whether vegetation indices could be used more broadly to detect volcanic unrest.
Resumo:
Abstract The development of cognitive robots needs a strong “sensorial” support which should allow it to perceive the real world for interacting with it properly. Therefore the development of efficient visual-processing software to be equipped in effective artificial agents is a must. In this project we study and develop a visual-processing software that will work as the “eyes” of a cognitive robot. This software performs a three-dimensional mapping of the robot’s environment, providing it with the essential information required to make proper decisions during its navigation. Due to the complexity of this objective we have adopted the Scrum methodology in order to achieve an agile development process, which has allowed us to correct and improve in a fast way the successive versions of the product. The present project is structured in Sprints, which cover the different stages of the software development based on the requirements imposed by the robot and its real necessities. We have initially explored different commercial devices oriented to the acquisition of the required visual information, adopting the Kinect Sensor camera (Microsoft) as the most suitable option. Later on, we have studied the available software to manage the obtained visual information as well as its integration with the robot’s software, choosing the high-level platform Matlab as the common nexus to join the management of the camera, the management of the robot and the implementation of the behavioral algorithms. During the last stages the software has been developed to include the fundamental functionalities required to process the real environment, such as depth representation, segmentation, and clustering. Finally the software has been optimized to exhibit real-time processing and a suitable performance to fulfill the robot’s requirements during its operation in real situations.
Resumo:
Modeling natural phenomena from 3D information enhances our understanding of the environment. Dense 3D point clouds are increasingly used as highly detailed input datasets. In addition to the capturing techniques of point clouds with LiDAR, low-cost sensors have been released in the last few years providing access to new research fields and facilitating 3D data acquisition for a broader range of applications. This letter presents an analysis of different speleothem features using 3D point clouds acquired with the gaming device Microsoft® Kinect. We compare the Kinect sensor with terrestrial LiDAR reference measurements using the KinFu pipeline for capturing complete 3D objects (< 4m**3). The results demonstrate the suitability of the Kinect to capture flowstone walls and to derive morphometric parameters of cave features. Although the chosen capturing strategy (KinFu) reveals a high correlation (R2=0.92) of stalagmite morphometry along the vertical object axis, a systematic overestimation (22% for radii and 44% for volume) is found. The comparison of flowstone wall datasets predominantly shows low differences (mean of 1 mm with 7 mm standard deviation) of the order of the Kinect depth precision. For both objects the major differences occur at strongly varying and curved surface structures (e.g. with fine concave parts).
Resumo:
Las TIC son inseparables de la museografía in situ e imprescindibles en la museografía en red fija y móvil. En demasiados casos se han instalado prótesis tecnológicas para barnizar de modernidad el espacio cultural, olvidando que la tecnología debe estar al servicio de los contenidos de manera que resulte invisible y perfectamente imbricada con la museografía tradicional. Las interfaces móviles pueden fusionar museo in situ y en red y acompañar a las personas más allá del espacio físico. Esa fusión debe partir de una base de datos narrativa y abierta a obras materiales e inmateriales de otros museos de manera que no se trasladen las limitaciones del museo físico al virtual. En el museo in situ tienen sentido las instalaciones hipermedia inmersivas que faciliten experiencias culturales innovadoras. La interactividad (relaciones virtuales) debe convivir con la interacción (relaciones físicas y personales) y estar al servicio de todas las personas, partiendo de que todas, todos tenemos limitaciones. Trabajar interdisciplinarmente ayuda a comprender mejor el museo para ponerlo al servicio de las personas.
Resumo:
Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.