978 resultados para Kidney Tubular Necrosis, Acute
Resumo:
BACKGROUND Renal ischemia/reperfusion (I/R) injury is manifested by acute renal failure (ARF) and acute tubular necrosis (ATN). The aim of this study was to evaluate the effectiveness of preconditioning with 3, 3, 5 triiodothyronine (T3) to prevent I/R renal injury. METHODOLOGY/PRINCIPAL FINDINGS THE RATS WERE DIVIDED INTO FOUR GROUPS: sham-operated, placebo-treated (SO-P), sham-operated T3- treated (SO- T3), I/R-injured placebo-treated (IR-P), and I/R-injured T3-treated (IR- T3) groups. At 24 h before ischemia, the animals received a single dose of T3 (100 μg/kg). Renal function and plasma, urinary, and tissue variables were studied at 4, 24, and 48 h of reperfusion, including biochemical, oxidative stress, and inflammation variables, PARP-1 immunohistochemical expression, and ATN morphology. In comparison to the SO groups, the IR-P groups had higher plasma urea and creatinine levels and greater proteinuria (at all reperfusion times) and also showed: increased oxidative stress-related plasma, urinary, and tissue variables; higher plasma levels of IL6 (proinflammatory cytokine); increased glomerular and tubular nuclear PARP-1 expression; and a greater degree of ATN. The IR-T3 group showed a marked reduction in all of these variables, especially at 48 h of reperfusion. No significant differences were observed between SO-P and SO-T3 groups. CONCLUSIONS This study demonstrates that preconditioning rats with a single dose of T3 improves the clinical signs and ATN of renal I/R injury. These beneficial effects are accompanied by reductions in oxidative stress, inflammation, and renal PARP-1 expression, indicating that this sequence of factors plays an important role in the ATN induced by I/R injury.
Resumo:
Immunohistochemistry was applied to identify the nature of the nucleated cells that accumulate in the vasa rectae of the corticomedullary junction in acute tubular necrosis. In all 6 cases studied, there were intravascular cells that reacted with monoclonal antibodies to erythroblast, macrophages, myeloid cells, T and B lymphocytes and rare megakaryocytes. The findings are consistent with the occurrence of intravascular haematopoiesis in the renal medulia in acute tubular necrosis.
Resumo:
There are few studies on the relationship between the morphology of acute tubular necrosis (ATN) in native kidneys and late functional recovery. Eighteen patients with acute renal failure (ARF) who had undergone renal biopsy were studied. All had the histological diagnosis of ATN and were followed for at least six months. Clinical characteristics of ARF were analyzed, and histological features were semi-quantitatively evaluated (tubular atrophy, interstitial inflammatory infiltrate, interstitial fibrosis, and ATN). According to the maximal GFR achieved during the follow-up, patients were divided into two groups: complete recovery (GFR >= 90 mL/min/1.73 m(2)) and partial recovery (GFR < 90 mL/min/1.73 m(2)). Only 39% of the patients achieved complete recovery. Patients with partial recovery achieved their maximal GFR (63 +/- 9 mL/min/1.73 m(2)) 37 +/- 14 months after ARF, a period of time similar to those patients with complete recovery (i.e., 54 +/- 22 months). Patients with partial recovery had more severe ARF: oliguria was more frequent (90 versus 17%, p < 0.01), and they had higher peak creatinine (13.85 +/- 1.12 versus 8.95 +/- 1.30 mg/dL, p = 0.01), and longer hospitalization (45 +/- 7 versus 20 +/- 4 days, p = 0.03). No single histological parameter was associated with partial recovery, but the sum of all was when expressed as an injury index [4.00 (2.73-5.45) versus 2.00 (1.25-3.31), p < 0.05]. In conclusion, among patients with atypical ATN course, those with more severe ARF and tubule-interstitial lesions are more prone to partial recovery.
Resumo:
Erythropoietin (EPO) has recently been shown to exert important cytoprotective and anti-apoptotic effects in experimental brain injury and cisplatin-induced nephrotoxicity. The aim of the present study was to determine whether EPO administration is also renoprotectivein both in vitro and in vivo models ofischaemic acute renal failure Methods. Primary cultures of human proximal tubule cells (PTCs) were exposed to either vehicle or EPO (6.25–400 IU/ml) in the presence of hypoxia (1% O2), normoxia (21% O2) or hypoxia followed by normoxia for up to 24 h. The end-points evaluated included cell apoptosis (morphology and in situ end labelling [ISEL], viability [lactate dehydrogenase (LDH release)], cell proliferation [proliferating cell nuclear antigen (PCNA)] and DNA synthesis (thymidine incorporation). The effects of EPO pre-treatment (5000 U/kg) on renal morphology and function were also studied in rat models of unilateral and bilateral ischaemia–reperfusion (IR) injury. Results. In the in vitro model, hypoxia (1% O2) induced a significant degree of PTC apoptosis, which was substantially reduced by co-incubation with EPO at 24 h (vehicle 2.5±0.5% vs 25 IU/ml EPO 1.8±0.4% vs 200 IU/ml EPO 0.9±0.2%, n = 9, P
Resumo:
We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.
Resumo:
We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.
Resumo:
The sediment from urinary bladder washings from 63 consecutive autopsies was cytologically studied in order to achieve a better understanding of the changes in urothelial cells collected from hospital populations. The observed alterations were correlated with alterations in the urinary system and with therapy preceding death. The specimens obtained were of good quality. In 39.7% of the cases, the sediment contained giant superficial multinucleated cells. Three of nine cases previously subjected to radiation or chemotherapy showed atypical urothelial cells. In three cases with immunosuppression, there was cytologic evidence of subclinical infection by polyomavirus, and virus particles were identified by electron microscopy of the vesical mucosa. The study of the smear background offered additional information: the sediment contained hyaline or hematic or hyaline-cellular casts in 17.4% of the cases, in all of which there were renal tubulopathies when the kidney sections were studied. The method is useful for a good evaluation of the autopsy as well as for training in urinary cytopathology.
Resumo:
Renal histology results are very scarce in dengue-associated rhabdomyolysis patients developing acute kidney injury (AKI). We report a case of dengue fever-induced AKI associated to rhabdomyolysis with a renal biopsy showing acute tubular necrosis (ATN) and renal deposition of myoglobin. A 28-year-old patient who presented dengue fever (DF) complicated by severe AKI and rhabdomyolysis is described. The patient required hemodialysis for three weeks. A renal biopsy revealed ATN with positive staining for myoglobin in the renal tubuli. The patient was discharged with recovered renal function. In conclusion, this case report described a biopsy proven ATN associated to DF-induced rhabdomyolysis, in which renal deposition of myoglobin was demonstrated. We suggest that serum creatine phosphokinase should be monitored in DF patients to allow for an early diagnosis of rhabdomyolysis and the institution of renal protective measures.
Resumo:
Immunohistochemistry was applied to identify the nature of the nucleated cells that accumulate in the vasa rectae of the corticomedullary junction in acute tubular necrosis. In all 6 cases studied, there were intravascular cells that reacted with monoclonal antibodies to erythroblast, macrophages, myeloid cells, T and B lymphocytes and rave megakaryocytes. The findings are consistent with the occurrence of intravascular haematopoiesis in the renal medulla in acute tubular necrosis.
Resumo:
Aims of our study were to describe the long-term survival in patients surviving an acute tubular necrosis (ATN) episode and determine factors associated with late mortality. We performed a prospective cohort study that evaluated the long-term outcome of 212 patients surviving an ATN episode. Mortality at the end of followup was 24.5%, and the probability of these patients being alive 5 years after discharge was 55%. During the followup, 4.7% of patients needed chronic dialysis. Univariate analysis showed that previous CKD (P = 0.0079), cardiovascular disease (P = 0.019), age greater than 60 years (P < 0.0001), and higher SCr baseline (P = 0.001), after 12 months (P = 0.0015) and 36 months (P = 0.004), were predictors of long-term mortality. In multivariate analysis, older age (HR = 6.4, CI 95% = 1.2-34.5, P = 0.02) and higher SCr after 12 months (HR = 2.1, 95% CI 95% = 1.14-4.1, P = 0.017) were identified as risk factors associated with late mortality. In conclusion, 55% of patients surviving an ATN episode were still alive, and less than 5% required chronic dialysis 60 months later; older age and increased Scr after 12 months were identified as risk factors associated with late death. © 2012 G. A. Brito et al.
Resumo:
Eight hundred and seventy-nine patients with acute kidney injury were retrospectively studied over year and eleven months for evaluation of urine volume as a risk factor for death. They were divided into five groups, according to the 24 h urine volume (UV): anuric (UV <= 50 mL/24 h, group 1), oliguric (UV > 50 mL/24 h and < 400 mL/24 h, group 2), and non-oliguric (UV >= 400 mL/24 h). Nonoliguric group was subdivided in three subgroups: UV > 400 mL/24 h and <= 1000 mL/24 h (group 3, reference group), UV > 1000 mL/24 h and <= 2000 mL/24 h (group 4), and UV > 2000 mL/24 h (group 5). Linear tendency test (Mantel extension) pointed out a significant increase in mortality with UV decrease (p < 0.001), confirmed by multivariate analysis. Anuric and oliguric patients had increased risk of respectively 95% and 76% times for death compared to controls (p < 0.05). Patients from groups 4 and 5 presented a reduced risk for death of 50% and 70%, respectively, p = 0.004 and p = 0.001. In conclusion, urine volume was a strong independent factor for mortality in this cohort of AKI patients.
Resumo:
Background. Subsequent ischaemic episodes may induce renal resistance. P21 is a cell cycle inhibitor that may be induced by oxygen-free radicals and may have a protective effect in ischaemic acute kidney injury (AKI). This study aimed at evaluating the role of oxidative stress and p21 on tubular resistance in a model of acquired resistance after renal ischaemia and in isolated renal tubules. Methods. Wistar rats were divided into: Group 1-sham; Group 2-sham operated and after 2 days submitted to 45-min ischaemia; and Group 3-45-min ischaemia followed after 2 days by a second 45-min ischaemia. Plasma urea was evaluated on Days 0, 2 and 4. Serum creatinine, creatinine clearance and oxidants (thiobarbituric acid-reactive substances) were determined 48 h after the second procedure (Day 4). Histology, immunohistochemistry for lymphocytes (CD3), macrophages (ED1), proliferation (PCNA) and apoptosis (TUNEL) were also evaluated. Rat proximal tubules (PTs) were isolated by collagenase digestion and Percoll gradient from control rats and rats previously subjected to 35 min of ischaemia. PTs were submitted to 15-min hypoxia followed by 45-min reoxygenation. Cell injury was assessed by lactate dehydrogenase release and hydroperoxide production (xylenol orange). Results. Ischaemia induced AKI in Group 2 and 3 rats. Subsequent ischaemia did not aggravate renal injury, demonstrating renal resistance (Group 3). Renal function recovery was similar in Group 2 and 3. Plasma and urine oxidants were similar among in Group 2 and 3. Histology disclosed acute tubular necrosis in Group 2 and 3. Lymphocyte infiltrates were similar among all groups whereas macrophages infiltrate was greater in Group 3. Cell proliferation was greater in Group 2 compared with Group 3. Apoptosis was similar in groups 2 and 3. The p21 expression was increased only in Group 3 whereas it was similar in groups 1 and 2. PTs from the ischaemia group were sensitive to hypoxia but resistant to reoxygenation injury which was followed by lower hydroperoxide production compared to control PT. Conclusion. Renal resistance induced by ischaemia was associated with cell mechanism mediators involving oxidative stress and increased p21 expression.
Resumo:
Urinary indices are classically believed to allow differentiation of transient (or pre-renal) acute kidney injury (AKI) from persistent (or acute tubular necrosis) AKI. However, the data validating urinalysis in critically ill patients are weak. In the previous issue of Critical Care, Pons and colleagues demonstrate in a multicenter observational study that sodium and urea excretion fractions as well as urinary over plasma ratios performed poorly as diagnostic tests to separate such entities. This study confirms the limited diagnostic and prognostic ability of urine testing. Together with other studies, this study raises more fundamental questions about the value, meaning and pathophysiologic validity of the pre-renal AKI paradigm and suggests that AKI (like all other forms of organ injury) is a continuum of injury that cannot be neatly divided into functional (pre-renal or transient) or structural (acute tubular necrosis or persistent).