999 resultados para Kendall problem
Resumo:
By a sequence of rollings without slipping or twisting along segments of a straight line of the plane, a spherical ball of unit radius has to be transferred from an initial state to an arbitrary final state taking into account the orientation of the ball. We provide a new proof that with at most 3 moves, we can go from a given initial state to an arbitrary final state. The first proof of this result is due to Hammersley ( 1983). His proof is more algebraic than ours which is more geometric. We also showed that generically no one of the three moves, in any elimination of the spin discrepancy, may have length equal to an integral multiple of 2 pi.
Resumo:
Nurse rostering is a difficult search problem with many constraints. In the literature, a number of approaches have been investigated including penalty function methods to tackle these constraints within genetic algorithm frameworks. In this paper, we investigate an extension of a previously proposed stochastic ranking method, which has demonstrated superior performance to other constraint handling techniques when tested against a set of constrained optimisation benchmark problems. An initial experiment on nurse rostering problems demonstrates that the stochastic ranking method is better in finding feasible solutions but fails to obtain good results with regard to the objective function. To improve the performance of the algorithm, we hybridise it with a recently proposed simulated annealing hyper-heuristic within a local search and genetic algorithm framework. The hybrid algorithm shows significant improvement over both the genetic algorithm with stochastic ranking and the simulated annealing hyper-heuristic alone. The hybrid algorithm also considerably outperforms the methods in the literature which have the previously best known results.
Resumo:
The purpose of this study was to determine whether public space in the suburbs has the same settings as that of a central city or if it has its own characteristics. In order to approach this problem the area of Kendall was thoroughly studied by examining aerial maps, historic images and writings of local historians such as Donna Knowles Born. Heavy emphasis was placed on the transformation of the original one-mile grid characteristic of the city of Miami. As the area of Kendall was being developed, the grid was transformed into an irregular and organic method of laying out a street system that directly affected pedestrian life. It became evident, therefore, that Kendall is primarily geared toward automobile movement, thus affecting the setting of public space. This also restricted social events forcing them to concentrate in specific places like the malls. These findings demonstrated that malls are centers of social interaction concentrating many social activities in one place. In other words, a mall serves as a common meeting place in the otherwise vast spread of the suburbs. This thesis also explains how public spaces in a suburban context can affect the community by working as filtering agents between the immediate context of a particular site and the overall city. The project, a "Wellness Center and Park" for the Kendall area, was an exploration of these filtering agents and the transitions they engendered. The research upon which this project was based recognized the important role of the site's history as well as extrapolating as to its future potential.
Resumo:
La distance de Kendall-τ compte le nombre de paires en désaccord entre deux permuta- tions. La distance d’une permutation à un ensemble est simplement la somme des dis- tances entre cette permutation et les permutations de l’ensemble. À partir d’un ensemble donné de permutations, notre but est de trouver la permutation, appelée médiane, qui minimise cette distance à l’ensemble. Le problème de la médiane de permutations sous la distance de Kendall-τ, trouve son application en bio-informatique, en science politique, en télécommunication et en optimisation. Ce problème d’apparence simple est prouvé difficile à résoudre. Dans ce mémoire, nous présentons plusieurs approches pour résoudre le problème, pour trouver une bonne solution approximative, pour le séparer en classes caractéristiques, pour mieux com- prendre sa compléxité, pour réduire l’espace de recheche et pour accélérer les calculs. Nous présentons aussi, vers la fin du mémoire, une généralisation de ce problème et nous l’étudions avec ces mêmes approches. La majorité du travail de ce mémoire se situe dans les trois articles qui le composent et est complémenté par deux chapitres servant à les lier.
Resumo:
La distance de Kendall-τ compte le nombre de paires en désaccord entre deux permuta- tions. La distance d’une permutation à un ensemble est simplement la somme des dis- tances entre cette permutation et les permutations de l’ensemble. À partir d’un ensemble donné de permutations, notre but est de trouver la permutation, appelée médiane, qui minimise cette distance à l’ensemble. Le problème de la médiane de permutations sous la distance de Kendall-τ, trouve son application en bio-informatique, en science politique, en télécommunication et en optimisation. Ce problème d’apparence simple est prouvé difficile à résoudre. Dans ce mémoire, nous présentons plusieurs approches pour résoudre le problème, pour trouver une bonne solution approximative, pour le séparer en classes caractéristiques, pour mieux com- prendre sa compléxité, pour réduire l’espace de recheche et pour accélérer les calculs. Nous présentons aussi, vers la fin du mémoire, une généralisation de ce problème et nous l’étudions avec ces mêmes approches. La majorité du travail de ce mémoire se situe dans les trois articles qui le composent et est complémenté par deux chapitres servant à les lier.
Resumo:
A new solution to the millionaire problem is designed on the base of two new techniques: zero test and batch equation. Zero test is a technique used to test whether one or more ciphertext contains a zero without revealing other information. Batch equation is a technique used to test equality of multiple integers. Combination of these two techniques produces the only known solution to the millionaire problem that is correct, private, publicly verifiable and efficient at the same time.