996 resultados para Kb Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The purpose of this study was to investigate the adhesion and invasion of periodontopathogenic bacteria in varied mixed infections and the release of interleukins from an epithelial cell line (KB cells). METHODS: KB cells were co-cultured with Porphyromonas gingivalis ATCC 33277 and M5-1-2, Tannerella forsythia ATCC 43037, Treponema denticola ATCC 35405 and Fusobacterium nucleatum ATCC 25586 in single and mixed infections. The numbers of adherent and internalized bacteria were determined up to 18 h after bacterial exposure. Additionally, the mRNA expression and concentrations of released interleukin (IL)-6 and IL-8 were measured. RESULTS: All periodontopathogenic bacteria adhered and internalized in different numbers to KB cells, but individually without any evidence of co-aggregation also to F. nucleatum. High levels of epithelial mRNA of IL-6 and IL-8 were detectable after all bacterial challenges. After the mixed infection of P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586 the highest levels of released interleukins were found. No IL-6 and IL-8 were detectable after the mixed infection of P. gingivalis M5-1-2 and F. nucleatum ATCC 25586 and the fourfold infection of P. gingivalis ATCC 33277, T. denticola ATCC 35405, T. forsythia ATCC 43037 and F. nucleatum ATCC 25586. CONCLUSION: Anaerobic periodontopathogenic bacteria promote the release of IL-6 and IL-8 by epithelial cells. Despite a continuous epithelial expression of IL-8 mRNA by all bacterial infections these effects are temporary because of the time-dependent degradation of cytokines by bacterial proteases. Mixed infections have a stronger virulence potential than single bacteria. Further research is necessary to evaluate the role of mixed infections and biofilms in the pathogenesis of periodontitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The newborns of mammals have a high folate demand, yet obtain adequate folate nutrition solely from their mothers' milk despite its low folate content. Milk folate is entirely bound by an excess of folate-binding protein (FBP), prompting speculation that FBP may affect the bioavailability of the limited folate supply. Previous research has shown that FBP-bound folic acid is more gradually absorbed, thereby reducing the peak plasma folate concentration and preventing loss into the urine. Natural folates are reduced derivatives of folic acid, with milk predominantly containing 5-methyltetrahydrofolate, yet little research has been carried out to determine the role of FBP in the bioavailability of reduced folates. We studied the effect of FBP on folate nutrition of rats in both single-dose and 4-wk feeding experiments. The effect of FBP was influenced by the presence of other milk components. FBP increased bioavailability of dietary folate when it was consumed with other whey proteins or with soluble casein. However, in the presence of acid-precipitated casein or a whey preparation enriched in lipids, bioavailability was decreased. These results highlight the difficulties of extrapolating from experimental results obtained using purified diets alone and of studying interactions among dietary components. They suggest that the addition of FBP-rich foods to folate-rich foods could enhance the bioavailability of natural folates, but that the outcome of such a combination would depend on interactions with other components of the diet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cucurbatacins are known to produce cytotoxic and anticancer activities. Two novel norcucurbitacin glucosides (Wvl and Wv2) have recently been isolated from a purified fraction obtained from the rhizome of Wilbrandia verticillata. The present study evaluates the cytotoxic and anti-tumour activities of the norcucurbitacins. We have found a regular cytotoxicity in KB cells (Cy50 = 12µg/ml) as well as a significant inhibition in the Walker 256 carcinosarcoma growth (approximately 75%).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La thérapie génique représente l'un des défis de la médecine des prochaines décennies dont la réussite dépend de la capacité d'acheminer l'ADN thérapeutique jusqu'à sa cible. Des structures non virales ont été envisagées, dont le chitosane, polymère cationique qui se combine facilement à l’ADN. Une fois le complexe formé, l’ADN est protégé des nucléases qui le dégradent. Le premier objectif de l'étude est de synthétiser et ensuite évaluer différentes nanoparticules de chitosane et choisir la mieux adaptée pour une efficacité de transfection sélective in vitro dans les cellules carcinomes épidermoïdes (KB). Le deuxième objectif de l'étude est d'examiner in vivo les effets protecteurs du gène de l'IL-1Ra (bloqueur naturel de la cytokine inflammatoire, l’Interleukine-1β) complexé aux nanoparticules de chitosane sélectionnées dans un modèle d'arthrite induite par un adjuvant (AIA) chez le rat. Les nanoparticules varient par le poids moléculaire du chitosane (5, 25 et 50 kDa), et la présence ou l’absence de l’acide folique (FA). Des mesures macroscopiques de l’inflammation seront évaluées ainsi que des mesures de concentrations de l’Interleukine-1β, Prostaglandine E2 et IL-1Ra humaine secrétés dans le sérum. Les nanoparticules Chitosane-ADN en présence de l’acide folique et avec du chitosane de poids moléculaire de 25 kDa, permettent une meilleure transfection in vitro. Les effets protecteurs des nanoparticules contenant le gène thérapeutique étaient évidents suite à la détection de l’IL-1Ra dans le sérum, la baisse d'expressions des facteurs inflammatoires, l’Interleukine-1 et la Prostaglandine-E2 ainsi que la diminution macroscopique de l’inflammation. Le but de cette étude est de développer notre méthode de thérapie génique non virale pour des applications cliniques pour traiter l’arthrite rhumatoïde et d’autres maladies humaines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polymer analogous synthesis involving the reductive amination of phosphorylcholine (PC)-glyceraldehyde with primary amines of deacetylated chitosan (M-w approximate to 57000 g mol(-1)) was used to prepare phosphorylcholine-substituted chitosans (PC-CH) with a degree of substitution (DS) ranging from similar to 11 to similar to 53 mol% PC-substituted glucosamine residues. The PC-CH derivatives were characterized by H-1 NMR spectroscopy, FTIR spectroscopy, and multiangle laser light scattering gel permeation chromatography (MALLS-GPC). The pKa of the PC-substituted amine groups (pKa approximate to 7.20) was determined by H-1 NMR titration. The PC-CH samples (1.0 g L-1) were shown to be nontoxic using an MTT assay performed with human KB cells. Aqueous solutions of PC-CH samples (4.0 g L-(1)) of DS g 22 mol% PC-substituted glucosamine residues remained clear, independently of pH (4.0 < pH < 11.0). The remarkable water solubility and nontoxicity displayed by the new PC-CH samples open up new opportunities in the design of chitosan-based biomaterials and nanoparticles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Objective: Periodontopathogens experience several challenges in the oral cavity that may influence their transcription profile and resulting phenotype. This study evaluated the effect of environmental changes on phenotype and gene expression in a serotype b Aggregatibacter actinomycetemcomitans isolate. Material and Methods: Cultures in early exponential phase and at the start of stationary growth phase in microaerophilic and anaerobic atmospheres were evaluated. Cell hydrophobic properties were measured by adherence to n-hexadecane; in addition, adhesion to, and the ability to invade, KB cells was evaluated. Relative transcription of 12 virulence-associated genes was determined by real-time reverse transcritption quantitative PCR. Results: The culture conditions tested in this study were found to influence the phenotypic and genotypic traits of A. actinomycetemcomitans. Cells cultured in microaerophilic conditions were the most hydrophobic, reached the highest adhesion efficiency and showed up-regulation of omp100 (which encodes an adhesion) and pga (related to polysaccharide synthesis). Cells grown anaerobically were more invasive to epithelial cells and showed up-regulation of genes involved in host-cell invasion or apoptosis induction (such as apaH, omp29, cagE and cdtB) and in adhesion to extracellular matrix protein (emaA). Conclusion: Environmental conditions of different oral habitats may influence the expression of factors involved in the binding of A. actinomycetemcomitans to host tissues and the damage resulting thereby, and thus should be considered in in-vitro studies assessing its pathogenic potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aggregatibacter actinomycetemcomitans is strongly implicated in the pathogenesis of periodontitis. In this study, the phenotypic and genotypic features of A. actinomycetemcomitans and the presence of genes involved in toxicity were determined. Sixty-five patients with periodontal pocket and 48 healthy subjects were evaluated. Biotyping, adherence and invasion, neuraminidase and biofilm production, presence of capsule and fimbria, as well as the presence of flp-1, apaH, ltx, and cdt genes were determined. Biotype II was the most prevalent. Sixty-six strains were adherent and 33 of them were able to invade KB cells. Sixty strains produced neuraminidase, and 55 strains biofilms. Strains showed capsule but not fimbriae. Forty-six strains were cytotoxic, and most strains harbored the apaH and flp-1 genes. LTX promoter and the ltxA gene were observed in all strains from periodontal patients. The cdtA gene was observed in 50 (71.4%) strains, cdtB in 48 (68.6%) strains, cdtC in 60 (85.7%), and cdtABC in 40 (57.1%) strains. The presence of A. actinomycetemcomitans harboring the cdtC gene from healthy subjects may represent a transitory microorganism in the oral microbiota. More studies are necessary to understand the real role of this microorganism in the pathogenesis of periodontal disease