891 resultados para Karhunen-Loève transform


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The merit of the Karhunen-Loève transform is well known. Since its basis is the eigenvector set of the covariance matrix, a statistical, not functional, representation of the variance in pattern ensembles is generated. By using the Karhunen-Loève transform coefficients as a natural feature representation of a character image, the eigenvector set can be regarded as an feature extractor for a classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La trasformata di Karhunen-Loève monodimensionale è la decomposizione di un processo stocastico del secondo ordine a parametrizzazione continua in coefficienti aleatori scorrelati. Nella presente dissertazione, la trasformata è ottenuta per via analitica, proiettando il processo, considerato in un intervallo di tempo limitato [a,b], su una base deterministica ottenuta dalle autofunzioni dell'operatore di Hilbert-Schmidt di covarianza corrispondenti ad autovalori positivi. Fondamentalmente l'idea del metodo è, dal primo, trovare gli autovalori positivi dell'operatore integrale di Hilbert-Schmidt, che ha in Kernel la funzione di covarianza del processo. Ad ogni tempo dell'intervallo, il processo è proiettato sulla base ortonormale dello span delle autofunzioni dell'operatore di Hilbert-Schmidt che corrispondono ad autovalori positivi. Tale procedura genera coefficienti aleatori che si rivelano variabili aleatorie centrate e scorrelate. L'espansione in serie che risulta dalla trasformata è una combinazione lineare numerabile di coefficienti aleatori di proiezione ed autofunzioni convergente in media quadratica al processo, uniformemente sull'intervallo temporale. Se inoltre il processo è Gaussiano, la convergenza è quasi sicuramente sullo spazio di probabilità (O,F,P). Esistono molte altre espansioni in serie di questo tipo, tuttavia la trasformata di Karhunen-Loève ha la peculiarità di essere ottimale rispetto all'errore totale in media quadratica che consegue al troncamento della serie. Questa caratteristica ha conferito a tale metodo ed alle sue generalizzazioni un notevole successo tra le discipline applicate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A representação de funções através da utilização de bases (KERNEL) de representação tem sido fundamental no processamento digital de sinais. A Transformada KARHUNEN-LOÈVE (KLT), também conhecida como Transformada HOTELLING, permite a representação de funções utilizando funções-base formadas pelos autovetores da matriz de correlação do sinal considerado. Nesse aspecto essa transformada fornece uma base ótima, isto é, aquela que proporciona o menor valor de Erro Quadrático Médio entre o sinal reconstruído e o original, para um determinado número de coeficientes. A dificuldade na utilização da KLT está no tempo adicional para calcular os autovetores (base) da matriz de correlação, o que muitas vezes inviabiliza a sua utilização nas aplicações em tempo real. Em muitas aplicações a KLT é utilizada em conjunto com outras transformadas melhorando os resultados destas aplicações. Sendo considerada a transformada ótima no sentido do Erro Quadrático Médio, este trabalho apresenta um estudo da Transformada KARHUNEN-LOÈVE nas aplicações de compressão de imagens bidimensionais estáticas e em tons de cinza, realizando também a comparação desta técnica com outras técnicas (DCT e WAVELET) buscando avaliar os pontos fortes e fracos da utilização da KLT para este tipo de aplicação. Duas técnicas importantes para solucionar o problema de cálculo dos autovalores e autovetores da matriz de correlação (Método de JACOBI e Método QL) são também apresentadas neste trabalho. Os resultados são comparados utilizando a Razão Sinal/Ruído de Pico (PSNR), a Razão de Compressão (CR) e os tempos de processamento (em segundos) para geração dos arquivos compactados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In geophysics there are several steps in the study of the Earth, one of them is the processing of seismic records. These records are obtained through observations made on the earth surface and are useful for information about the structure and composition of the inaccessible parts in great depths. Most of the tools and techniques developed for such studies has been applied in academic projects. The big problem is that the seismic processing power unwanted, recorded by receivers that do not bring any kind of information related to the reflectors can mask the information and/or generate erroneous information from the subsurface. This energy is known as unwanted seismic noise. To reduce the noise and improve a signal indicating a reflection, without losing desirable signals is sometimes a problem of difficult solution. The project aims to get rid of the ground roll noise, which shows a pattern characterized by low frequency, low rate of decay, low velocity and high amplituds. The Karhunen-Loève Transform is a great tool for identification of patterns based on the eigenvalues and eigenvectors. Together with the Karhunen-Loève Transform we will be using the Singular Value Decomposition, since it is a great mathematical technique for manipulating data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In geophysics there are several steps in the study of the Earth, one of them is the processing of seismic records. These records are obtained through observations made on the earth surface and are useful for information about the structure and composition of the inaccessible parts in great depths. Most of the tools and techniques developed for such studies has been applied in academic projects. The big problem is that the seismic processing power unwanted, recorded by receivers that do not bring any kind of information related to the reflectors can mask the information and/or generate erroneous information from the subsurface. This energy is known as unwanted seismic noise. To reduce the noise and improve a signal indicating a reflection, without losing desirable signals is sometimes a problem of difficult solution. The project aims to get rid of the ground roll noise, which shows a pattern characterized by low frequency, low rate of decay, low velocity and high amplituds. The Karhunen-Loève Transform is a great tool for identification of patterns based on the eigenvalues and eigenvectors. Together with the Karhunen-Loève Transform we will be using the Singular Value Decomposition, since it is a great mathematical technique for manipulating data

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adaptive mechanische Systeme, Formkontrolle, Formadaption, Modal-Entwicklung, Karhunen-Loéve-EntƯwicklung, Modellreduktion

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O processamento de registros sísmicos é uma tarefa muito importante dentro da Geofísica e que representa um desafio permanente na exploração de petróleo. Embora esses sinais forneçam uma imagem adequada da estrutura geológica do subsolo, eles são contaminados por ruídos e, o ground roll é a componente principal. Este fato exige um esforço grande para o desenvolvimento de metodologias para filtragem, Dentro desse contexto, este trabalho tem como objetivo apresentar um método de remoção do ruído ground roll fazendo uso de ferramentas da Física Estatística. No método, a Análise em Ondeletas é combinada com a Transformada de Karhunen-Loève para a remoção em uma região bem localizada. O processo de filtragem começa com a Decomposição em Multiescala. Essa técnica permite uma representação em tempo-escala fazendo uso das ondeletas discretas implementadas a filtros de reconstrução perfeita. O padrão sísmico original fica representado em multipadrões: um por escala. Assim, pode-se atenuar o ground roll como uma operação cirúrgica em cada escala, somente na região onde sua presença é forte, permitindo preservar o máximo de informações relevantes. A atenuação é realizada pela definição de um fator de atenuação Af. Sua escolha é feita pelo comportamento dos modos de energia da Transformada de Karhunen-Loève. O ponto correspondendo a um mínimo de energia do primeiro modo é identificado como um fator de atenuação ótimo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fourier transform-infrared (FT-IR) signature of dry samples of DNA and DNA-polypeptide complexes, as studied by IR microspectroscopy using a diamond attenuated total reflection (ATR) objective, has revealed important discriminatory characteristics relative to the PO2(-) vibrational stretchings. However, DNA IR marks that provide information on the sample's richness in hydrogen bonds have not been resolved in the spectral profiles obtained with this objective. Here we investigated the performance of an all reflecting objective (ARO) for analysis of the FT-IR signal of hydrogen bonds in DNA samples differing in base richness types (salmon testis vs calf thymus). The results obtained using the ARO indicate prominent band peaks at the spectral region representative of the vibration of nitrogenous base hydrogen bonds and of NH and NH2 groups. The band areas at this spectral region differ in agreement with the DNA base richness type when using the ARO. A peak assigned to adenine was more evident in the AT-rich salmon DNA using either the ARO or the ATR objective. It is concluded that, for the discrimination of DNA IR hydrogen bond vibrations associated with varying base type proportions, the use of an ARO is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourier transform near infrared (FT-NIR) spectroscopy was evaluated as an analytical too[ for monitoring residual Lignin, kappa number and hexenuronic acids (HexA) content in kraft pulps of Eucalyptus globulus. Sets of pulp samples were prepared under different cooking conditions to obtain a wide range of compound concentrations that were characterised by conventional wet chemistry analytical methods. The sample group was also analysed using FT-NIR spectroscopy in order to establish prediction models for the pulp characteristics. Several models were applied to correlate chemical composition in samples with the NIR spectral data by means of PCR or PLS algorithms. Calibration curves were built by using all the spectral data or selected regions. Best calibration models for the quantification of lignin, kappa and HexA were proposed presenting R-2 values of 0.99. Calibration models were used to predict pulp titers of 20 external samples in a validation set. The lignin concentration and kappa number in the range of 1.4-18% and 8-62, respectively, were predicted fairly accurately (standard error of prediction, SEP 1.1% for lignin and 2.9 for kappa). The HexA concentration (range of 5-71 mmol kg(-1) pulp) was more difficult to predict and the SEP was 7.0 mmol kg(-1) pulp in a model of HexA quantified by an ultraviolet (UV) technique and 6.1 mmol kg(-1) pulp in a model of HexA quantified by anion-exchange chromatography (AEC). Even in wet chemical procedures used for HexA determination, there is no good agreement between methods as demonstrated by the UV and AEC methods described in the present work. NIR spectroscopy did provide a rapid estimate of HexA content in kraft pulps prepared in routine cooking experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important topic in genomic sequence analysis is the identification of protein coding regions. In this context, several coding DNA model-independent methods based on the occurrence of specific patterns of nucleotides at coding regions have been proposed. Nonetheless, these methods have not been completely suitable due to their dependence on an empirically predefined window length required for a local analysis of a DNA region. We introduce a method based on a modified Gabor-wavelet transform (MGWT) for the identification of protein coding regions. This novel transform is tuned to analyze periodic signal components and presents the advantage of being independent of the window length. We compared the performance of the MGWT with other methods by using eukaryote data sets. The results show that MGWT outperforms all assessed model-independent methods with respect to identification accuracy. These results indicate that the source of at least part of the identification errors produced by the previous methods is the fixed working scale. The new method not only avoids this source of errors but also makes a tool available for detailed exploration of the nucleotide occurrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of the Boltzmann transform function, lambda(theta), to solve the Richards equation when the diffusivity, D, is a function of only soil water content,., is now commonplace in the literature. Nevertheless, a new analytic solution of the Boltzmann transform lambda(h) as a function of matric potential for horizontal water infiltration into a sand was derived without invoking the concept or use of D(theta). The derivation assumes that a similarity exists between the soil water retention function and the Boltzmann transform lambda(theta). The solution successfully described soil water content profiles experimentally measured for different infiltration times into a homogeneous sand and agrees with those presented by Philip in 1955 and 1957. The applicability of this solution for all soils remains open, but it is anticipated to hold for soils whose air-filled pore-size distribution before wetting is sufficiently narrow to yield a sharp increase of water content at the wetting front during infiltration. It also improves and provides a versatile alternative to the well-known analysis pioneered by Green and Ampt in 1911.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.

Relevância:

20.00% 20.00%

Publicador: