795 resultados para Kalman Filter, Markov-Switching Regimes, Hidden States, Hidden Variables


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work evaluates empirically the Taylor rule for the US and Brazil using Kalman Filter and Markov-Switching Regimes. We show that the parameters of the rule change significantly with variations in both output and output gap proxies, considering hidden variables and states. Such conclusions call naturally for robust optimal monetary rules. We also show that Brazil and US have very contrasting parameters, first because Brazil presents time-varying intercept, second because of the rigidity in the parameters of the Brazilian Taylor rule, regardless the output gap proxy, data frequency or sample data. Finally, we show that the long-run inflation parameter of the US Taylor rule is less than one in many periods, contrasting strongly with Orphanides (forthcoming) and Clarida, Gal´i and Gertler (2000), and the same happens with Brazilian monthly data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work empirically evaluates the Taylor rule for the US and Brazil using Markov-Switching Regimes. I find that the inflation parameter of the US Taylor rule is less than one in many periods, contrasting heavily with Clarida, Gal´ı and Gertler (2000), and the same happens with Brazilian data. When the inflation parameter is greater than one, it encompasses periods that these authors considered they should be less than one. Brazil is used for comparative purposes because it experienced a high level inflation until 1994 and then a major stabilization plan reduced the growth in prices to civilized levels. Thus, it is a natural laboratory to test theories designed to work in any environment. The findings point to a theoretical gap that deserves further investigation and show that monetary policy in Brazil has been ineffective, which is coherent with the general attitude of population in relation to this measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is traditional to initialise Kalman filters and extended Kalman filters with estimates of the states calculated directly from the observed (raw) noisy inputs, but unfortunately their performance is extremely sensitive to state initialisation accuracy: good initial state estimates ensure fast convergence whereas poor estimates may give rise to slow convergence or even filter divergence. Divergence is generally due to excessive observation noise and leads to error magnitudes that quickly become unbounded (R.J. Fitzgerald, 1971). When a filter diverges, it must be re initialised but because the observations are extremely poor, re initialised states will have poor estimates. The paper proposes that if neurofuzzy estimators produce more accurate state estimates than those calculated from the observed noisy inputs (using the known state model), then neurofuzzy estimates can be used to initialise the states of Kalman and extended Kalman filters. Filters whose states have been initialised with neurofuzzy estimates should give improved performance by way of faster convergence when the filter is initialised, and when a filter is re started after divergence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of Oceans dynamics and forecast is crucial as it influences the regional climate and other marine activities. Forecasting oceanographic states like sea surface currents, Sea surface temperature (SST) and mixed layer depth at different time scales is extremely important for these activities. These forecasts are generated by various ocean general circulation models (OGCM). One such model is the Regional Ocean Modelling System (ROMS). Though ROMS can simulate several features of ocean, it cannot reproduce the thermocline of the ocean properly. Solution to this problem is to incorporates data assimilation (DA) in the model. DA system using Ensemble Transform Kalman Filter (ETKF) has been developed for ROMS model to improve the accuracy of the model forecast. To assimilate data temperature and salinity from ARGO data has been used as observation. Assimilated temperature and salinity without localization shows oscillations compared to the model run without assimilation for India Ocean. Same was also found for u and v-velocity fields. With localization we found that the state variables are diverging within the localization scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the stationarity of this ratio in the context of a Markov-switching model à la Hamilton (1989) where an asymmetric speed of adjustment is introduced. This particular specification robustly supports a nonlinear reversion process and identifies two relevant episodes: the post-war period from the mid-50’s to the mid-70’s and the so called “90’s boom” period. A three-regime Markov-switching model displays the best regime identification and reveals that only the first part of the 90’s boom (1985-1995) and the post-war period are near-nonstationary states. Interestingly, the last part of the 90’s boom (1996-2000), characterized by a growing price-dividend ratio, is entirely attributed to a regime featuring a highly reverting process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the basic present value model of interest rates under rational expectations with two additional features. First, following McCallum (1994), the model assumes a policy reaction function where changes in the short-term interest rate are determined by the long-short spread. Second, the short-term interest rate and the risk premium processes are characterized by a Markov regime-switching model. Using US post-war interest rate data, this paper finds evidence that a two-regime switching model fits the data better than the basic model. The estimation results also show the presence of two alternative states displaying quite different features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed an ensemble Kalman Filter (EnKF) to estimate 8-day regional surface fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2) and evaluate the approach using a series of synthetic experiments, in preparation for data from the NASA Orbiting Carbon Observatory (OCO). The 32-day duty cycle of OCO alternates every 16 days between nadir and glint measurements of backscattered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble of states to represent the error covariances to estimate 8-day CO2 surface fluxes over 144 geographical regions. We use a 12×8-day lag window, recognising that XCO2 measurements include surface flux information from prior time windows. The observation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2 includes: a) the GEOS-Chem transport model that relates surface fluxes to global 3-D distributions of CO2 concentrations, which are sampled at the time and location of OCO measurements that are cloud-free and have aerosol optical depths <0.3; and b) scene-dependent averaging kernels that relate the CO2 profiles to XCO2, accounting for differences between nadir and glint measurements, and the associated scene-dependent observation errors. We show that OCO XCO2 measurements significantly reduce the uncertainties of surface CO2 flux estimates. Glint measurements are generally better at constraining ocean CO2 flux estimates. Nadir XCO2 measurements over the terrestrial tropics are sparse throughout the year because of either clouds or smoke. Glint measurements provide the most effective constraint for estimating tropical terrestrial CO2 fluxes by accurately sampling fresh continental outflow over neighbouring oceans. We also present results from sensitivity experiments that investigate how flux estimates change with 1) bias and unbiased errors, 2) alternative duty cycles, 3) measurement density and correlations, 4) the spatial resolution of estimated flux estimates, and 5) reducing the length of the lag window and the size of the ensemble. At the revision stage of this manuscript, the OCO instrument failed to reach its orbit after it was launched on 24 February 2009. The EnKF formulation presented here is also applicable to GOSAT measurements of CO2 and CH4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses an important issue related to the implementation and interpretation of the analysis scheme in the ensemble Kalman filter . I t i s shown that the obser vations must be treated as random variables at the analysis steps. That is, one should add random perturbations with the correct statistics to the obser vations and generate an ensemble of obser vations that then is used in updating the ensemble of model states. T raditionally , this has not been done in previous applications of the ensemble Kalman filter and, as will be shown, this has resulted in an updated ensemble with a variance that is too low . This simple modification of the analysis scheme results in a completely consistent approach if the covariance of the ensemble of model states is interpreted as the prediction error covariance, and there are no further requirements on the ensemble Kalman filter method, except for the use of an ensemble of sufficient size. Thus, there is a unique correspondence between the error statistics from the ensemble Kalman filter and the standard Kalman filter approach

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Market timing performance of mutual funds is usually evaluated with linear models with dummy variables which allow for the beta coefficient of CAPM to vary across two regimes: bullish and bearish market excess returns. Managers, however, use their predictions of the state of nature to deÞne whether to carry low or high beta portfolios instead of the observed ones. Our approach here is to take this into account and model market timing as a switching regime in a way similar to Hamilton s Markov-switching GNP model. We then build a measure of market timing success and apply it to simulated and real world data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates economic growth’s pattern of variation across and within countries using a Time-Varying Transition Matrix Markov-Switching Approach. The model developed follows the approach of Pritchett (2003) and explains the dynamics of growth based on a collection of different states, each of which has a sub-model and a growth pattern, by which countries oscillate over time. The transition matrix among the different states varies over time, depending on the conditioning variables of each country, with a linear dynamic for each state. We develop a generalization of the Diebold’s EM Algorithm and estimate an example model in a panel with a transition matrix conditioned on the quality of the institutions and the level of investment. We found three states of growth: stable growth, miraculous growth, and stagnation. The results show that the quality of the institutions is an important determinant of long-term growth, whereas the level of investment has varying roles in that it contributes positively in countries with high-quality institutions but is of little relevance in countries with medium- or poor-quality institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to test an algorithm to estimate, in real time, the attitude of an artificial satellite using real data supplied by attitude sensors that are on board of the CBERS-2 satellite (China Brazil Earth Resources Satellite). The real-time estimator used in this work for attitude determination is the Unscented Kalman Filter. This filter is a new alternative to the extended Kalman filter usually applied to the estimation and control problems of attitude and orbit. This algorithm is capable of carrying out estimation of the states of nonlinear systems, without the necessity of linearization of the nonlinear functions present in the model. This estimation is possible due to a transformation that generates a set of vectors that, suffering a nonlinear transformation, preserves the same mean and covariance of the random variables before the transformation. The performance will be evaluated and analyzed through the comparison between the Unscented Kalman filter and the extended Kalman filter results, by using real onboard data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluate the performance of several specification tests for Markov regime-switching time-series models. We consider the Lagrange multiplier (LM) and dynamic specification tests of Hamilton (1996) and Ljung–Box tests based on both the generalized residual and a standard-normal residual constructed using the Rosenblatt transformation. The size and power of the tests are studied using Monte Carlo experiments. We find that the LM tests have the best size and power properties. The Ljung–Box tests exhibit slight size distortions, though tests based on the Rosenblatt transformation perform better than the generalized residual-based tests. The tests exhibit impressive power to detect both autocorrelation and autoregressive conditional heteroscedasticity (ARCH). The tests are illustrated with a Markov-switching generalized ARCH (GARCH) model fitted to the US dollar–British pound exchange rate, with the finding that both autocorrelation and GARCH effects are needed to adequately fit the data.