720 resultados para Kalman, Filtragem de
Resumo:
O trabalho tem como objetivo comparar a eficácia das diferentes metodologias de projeção de inflação aplicadas ao Brasil. Serão comparados modelos de projeção que utilizam os dados agregados e desagregados do IPCA em um horizonte de até doze meses à frente. Foi utilizado o IPCA na base mensal, com início em janeiro de 1996 e fim em março de 2012. A análise fora da amostra foi feita para o período entre janeiro de 2008 e março de 2012. Os modelos desagregados serão estimados por SARIMA, pelo software X-12 ARIMA disponibilizado pelo US Census Bureau, e terão as aberturas do IPCA de grupos (9) e itens (52), assim como aberturas com sentido mais econômico utilizadas pelo Banco Central do Brasil como: serviços, administrados, alimentos e industrializados; duráveis, não duráveis, semiduráveis, serviços e administrados. Os modelos agregados serão estimados por técnicas como SARIMA, modelos estruturais em espaço-estado (Filtro de Kalman) e Markov-switching. Os modelos serão comparados pela técnica de seleção de modelo Model Confidence Set, introduzida por Hansen, Lunde e Nason (2010), e Dielbod e Mariano (1995), no qual encontramos evidências de ganhos de desempenho nas projeções dos modelos mais desagregados em relação aos modelos agregados.
Resumo:
Esta pesquisa busca testar a eficácia de uma estratégia de arbitragem de taxas de juros no Brasil baseada na utilização do modelo de Nelson-Siegel dinâmico aplicada à curva de contratos futuros de taxa de juros de 1 dia da BM&FBovespa para o período compreendido entre 02 de janeiro de 2008 e 03 de dezembro de 2012. O trabalho adapta para o mercado brasileiro o modelo original proposto por Nelson e Siegel (1987), e algumas de suas extensões e interpretações, chegando a um dos modelos propostos por Diebold, Rudebusch e Aruoba (2006), no qual estimam os parâmetros do modelo de Nelson-Siegel em uma única etapa, colocando-o em formato de espaço de estados e utilizando o Filtro de Kalman para realizar a previsão dos fatores, assumindo que o comportamento dos mesmos é um VAR de ordem 1. Desta maneira, o modelo possui a vantagem de que todos os parâmetros são estimados simultaneamente, e os autores mostraram que este modelo possui bom poder preditivo. Os resultados da estratégia adotada foram animadores quando considerados para negociação apenas os 7 primeiros vencimentos abertos para negociação na BM&FBovespa, que possuem maturidade máxima próxima a 1 ano.
Resumo:
Este tese é composta por quatro ensaios sobre aplicações econométricas em tópicos econômicos relevantes. Os estudos versam sobre consumo de bens não-duráveis e preços de imóveis, capital humano e crescimento econômico, demanda residencial de energia elétrica e, por fim, periodicidade de variáveis fiscais de Estados e Municípios brasileiros. No primeiro artigo, "Non-Durable Consumption and Real-Estate Prices in Brazil: Panel-Data Analysis at the State Level", é investigada a relação entre variação do preço de imóveis e variação no consumo de bens não-duráveis. Os dados coletados permitem a formação de um painel com sete estados brasileiros observados entre 2008- 2012. Os resultados são obtidos a partir da estimação de uma forma reduzida obtida em Campbell e Cocco (2007) que aproxima um modelo estrutural. As estimativas para o caso brasileiro são inferiores as de Campbell e Cocco (2007), que, por sua vez, utilizaram microdados britânicos. O segundo artigo, "Uma medida alternativa de capital humano para o estudo empírico do crescimento", propõe uma forma de mensuração do estoque de capital humano que reflita diretamente preços de mercado, através do valor presente do fluxo de renda real futura. Os impactos dessa medida alternativa são avaliados a partir da estimação da função de produção tradicional dos modelos de crescimento neoclássico. Os dados compõem um painel de 25 países observados entre 1970 e 2010. Um exercício de robustez é realizado para avaliar a estabilidade dos coeficientes estimados diante de variações em variáveis exógenas do modelo. Por sua vez, o terceiro artigo "Household Electricity Demand in Brazil: a microdata approach", parte de dados da Pesquisa de Orçamento Familiar (POF) para mensurar a elasticidade preço da demanda residencial brasileira por energia elétrica. O uso de microdados permite adotar abordagens que levem em consideração a seleção amostral. Seu efeito sobre a demanda de eletricidade é relevante, uma vez que esta demanda é derivada da demanda por estoque de bens duráveis. Nesse contexto, a escolha prévia do estoque de bens duráveis (e consequentemente, a escolha pela intensidade de energia desse estoque) condiciona a demanda por eletricidade dos domicílios. Finalmente, o quarto trabalho, "Interpolação de Variáveis Fiscais Brasileiras usando Representação de Espaço de Estados" procurou sanar o problema de baixa periodicidade da divulgação de séries fiscais de Estados e Municípios brasileiros. Através de técnica de interpolação baseada no Filtro de Kalman, as séries mensais não observadas são projetadas a partir de séries bimestrais parcialmente observadas e covariáveis mensais selecionadas.
Resumo:
Este trabalho primeiramente explora fundamentos teóricos básicos para análise e implementação de algoritmos para a modelagem de séries temporais. A finalidade principal da modelagem de séries temporais será a predição para utilizá-la na arbitragem estatística. As séries utilizadas são retiradas de uma base de histórico do mercado de ações brasileiro. Estratégias de arbitragem estatística, mais especificamente pairs trading, utilizam a característica de reversão à média dos modelos para explorar um lucro potencial quando o módulo do spread está estatisticamente muito afastado de sua média. Além disso, os modelos dinâmicos deste trabalho apresentam parâmetros variantes no tempo que aumentam a sua flexibilidade e adaptabilidade em mudanças estruturais do processo. Os pares do algoritmo de pairs trading são escolhidos selecionando ativos de mesma empresa ou índices e ETFs (Exchange Trade Funds). A validação da escolha dos pares é feita utilizando testes de cointegração. As simulações demonstram os resultados dos testes de cointegração, a variação no tempo dos parâmetros do modelo e o resultado de um portfólio fictício.
Resumo:
A tradicional representação da estrutura a termo das taxas de juros em três fatores latentes (nível, inclinação e curvatura) teve sua formulação original desenvolvida por Charles R. Nelson e Andrew F. Siegel em 1987. Desde então, diversas aplicações vêm sendo desenvolvidas por acadêmicos e profissionais de mercado tendo como base esta classe de modelos, sobretudo com a intenção de antecipar movimentos nas curvas de juros. Ao mesmo tempo, estudos recentes como os de Diebold, Piazzesi e Rudebusch (2010), Diebold, Rudebusch e Aruoba (2006), Pooter, Ravazallo e van Dijk (2010) e Li, Niu e Zeng (2012) sugerem que a incorporação de informação macroeconômica aos modelos da ETTJ pode proporcionar um maior poder preditivo. Neste trabalho, a versão dinâmica do modelo Nelson-Siegel, conforme proposta por Diebold e Li (2006), foi comparada a um modelo análogo, em que são incluídas variáveis exógenas macroeconômicas. Em paralelo, foram testados dois métodos diferentes para a estimação dos parâmetros: a tradicional abordagem em dois passos (Two-Step DNS), e a estimação com o Filtro de Kalman Estendido, que permite que os parâmetros sejam estimados recursivamente, a cada vez que uma nova informação é adicionada ao sistema. Em relação aos modelos testados, os resultados encontrados mostram-se pouco conclusivos, apontando uma melhora apenas marginal nas estimativas dentro e fora da amostra quando as variáveis exógenas são incluídas. Já a utilização do Filtro de Kalman Estendido mostrou resultados mais consistentes quando comparados ao método em dois passos para praticamente todos os horizontes de tempo estudados.
Resumo:
This paper has several original contributions. The rst is to employ a superior interpolation method that enables to estimate, nowcast and forecast monthly Brazilian GDP for 1980-2012 in an integrated way; see Bernanke, Gertler and Watson (1997, Brookings Papers on Economic Activity). Second, along the spirit of Mariano and Murasawa (2003, Journal of Applied Econometrics), we propose and test a myriad of interpolation models and interpolation auxiliary series all coincident with GDP from a business-cycle dating point of view. Based on these results, we nally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic activity indicator widely used by practitioners in Brazil- the Brazilian Economic Activity Index - (IBC-Br). We found that the our monthly GDP tracks economic activity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline) that our monthly estimate must add up to the quarterly observed series in any given quarter, whichmay not hold regarding IBC-Br. Moreover, our method has the advantage to be easily implemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. Third, in a nowcasting and forecasting exercise, we illustrate the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.
Resumo:
A modelagem da estrutura a termo da taxa juros tem grande relevância para o mercado financeiro, isso se deve ao fato de ser utilizada na precificação de títulos de crédito e derivativos, ser componente fundamental nas políticas econômicas e auxiliar a criação de estratégias trading. A classe de modelos criada por Nelson-Siegel (1987), foi estendida por diversos autores e atualmente é largamente utilizada por diversos bancos centrais ao redor do mundo. Nesse trabalho utilizaremos a extensão proposta por Diebold e Li (2006) aplicada para o mercado brasileiro, os parâmetros serão calibrados através do Filtro de Kalman e do Filtro de Kalman Estendido, sendo que o último método permitirá estimar com dinamismo os quatros parâmetros do modelo. Como mencionado por Durbin e Koopman (2012), as fórmulas envolvidas no filtro de Kalman e em sua versão estendida não impõe condições de dimensão constante do vetor de observações. Partindo desse conceito, a implementação dos filtros foi feita de forma a possibilitar sua aplicação independentemente do número de observações da curva de juros em cada instante de tempo, dispensando a necessidade de interpolar os dados antes da calibração. Isso ajuda a refletir mais fielmente a realidade do mercado e relaxar as hipóteses assumidas ao interpolar previamente para obter vértices fixos. Também será testada uma nova proposta de adaptação do modelo de Nelson-Siegel, nela o parâmetro de nível será condicionado aos títulos terem vencimento antes ou depois da próxima reunião do Copom. O objetivo é comparar qualidade da predição entre os métodos, pontuando quais são as vantagens e desvantagens encontradas em cada um deles.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Métodos de identificação e redução de modelos para atenuação de vibrações em estruturas inteligentes
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Desde o início do crescente interesse na área de robótica que a navegação autónoma se apresenta como um problema de complexa resolução que, por isso, desperta vasto interesse no meio científico. Além disso, as capacidades da navegação autónoma aliadas à robótica permitem o desenvolvimento de variadas aplicações. O objectivo da navegação autónoma é conferir, a um dispositivo motor, capacidade de decisão relativa à locomoção. Para o efeito, utilizam-se sensores, como os sensores IMU, o receptor GPS e os encoders, para fornecer os dados essenciais à navegação. A dificuldade encontra-se no correcto processamento destes sinais uma vez que são susceptíveis a fontes de ruído. Este trabalho apresenta um sistema de navegação autónomo aplicado ao controlo de um robot. Para tal, desenvolveu-se uma aplicação que alberga todo o sistema de localização, navegação e controlo, acrescido de uma interface gráfica, que permite a visualização em mapa da movimentação autónoma do robot. Recorre-se ao Filtro de Kalman como método probabilístico de estimação de posição, em que os sinais dos vários sensores são conjugados e filtrados. Foram realizados vários testes de modo a avaliar a capacidade do robot atingir os pontos traçados e a sua autonomia no seguimento da trajectória pretendida.
Resumo:
O filtro de Kalman é aplicado para filtragem inversa ou problema de deconvolução. Nesta dissertação aplicamos o método de Kalman, considerado como uma outra visão de processamento no domínio do tempo, para separar sinal-ruído em perfil sônico admitido como uma realização de um processo estocástico não estacionário. Em um trabalho futuro estudaremos o problema da deconvolução. A dedução do filtro de Kalman destaca a relação entre o filtro de Kalman e o de Wiener. Estas deduções são baseadas na representação do sistema por variáveis de estado e modelos de processos aleatórios, com a entrada do sistema linear acrescentado com ruído branco. Os resultados ilustrados indicam a aplicabilidade dessa técnica para uma variedade de problemas de processamento de dados geofísicos, por exemplo, ideal para well log. O filtro de Kalman oferece aos geofísicos de exploração informações adicionais para o processamento, problemas de modelamento e a sua solução.
Resumo:
O filtro de Kalman estendido tem sido a mais popular ferramenta de filtragem não linear das últimas quatro décadas. É de fácil implementação e apresenta baixo custo computacional. Nos casos nos quais as não linearidades do sistema dinâmico são significativas, porém, o filtro de Kalman estendido pode apresentar resultados insatisfatórios. Nessas situações, o filtro de Kalman unscented substitui com vantagens o filtro de Kalman estendido, pois pode apresentar melhores estimativas de estado, embora ambos os filtros exibam complexidade computacional de mesma ordem. A qualidade das estimativas de estado do filtro unscented está intimamente ligada à sintonia dos parâmetros que controlam a transformada unscented. A versão escalada dessa transformada exibe três parâmetros escalares que determinam o posicionamento dos pontos sigma e, consequentemente, afetam diretamente a qualidade das estimativas produzidas pelo filtro. Apesar da importância do filtro de Kalman unscented, a sintonia ótima desses parâmetros é um problema para o qual ainda não há solução definitiva. Não há nem mesmo recomendações heurísticas que garantam o bom funcionamento do filtro unscented na maior parte dos problemas tratáveis por meio de filtros Gaussianos. Essa carência e a importância desse filtro para a área de filtragem não linear fazem da busca por mecanismos de sintonia automática do filtro unscented área de pesquisa ativa. Assim, este trabalho propõe técnicas para sintonia automática dos parâmetros da transformada unscented escalada. Além da sintonia desses parâmetros, também é abordado o problema de sintonizar as matrizes de covariância dos ruídos de processo e de medida demandadas pelo modelo do sistema dinâmico usado pelo filtro unscented. As técnicas propostas cobrem então a sintonia automática de todos os parâmetros do filtro.
Resumo:
An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.