3 resultados para Kaisaniemi


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pro gradu- tutkielmassani tarkastelen julkista tilaa ja tilakäyttöjen avulla. Tilakäyttöjä tarkastellaan kaupunkipuiston kautta kaupungissa. Tutkimuskohteeksi on valittu Kaisaniemen puisto sen historiallisen merkityksen ja sijainnin kannalta Helsingissä. Kaupunkipuistoja käytetään erityisesti virkistyskäyttöön ja vapaa-ajan toimintaan. Tämä piirre yhdistää sen vahvasti demokratian periaatteisiin tilasta, jota kaikkien on mahdollista käyttää. Pro gradu- tutkielman teoreettinen pohja on rakennettu Henri Lefebvren tilateorian ja Don Micheliin puiston haltuunottoon liittyvän teorian yhdistelmästä. Aineistona toimii kenttätutkimuksen avulla kerätty aineisto. Havainnointi-menetelmällä kerätystä aineistosta laaditaan kolme erityyppistä aineistoa: havainnot, tilastot ja käyttäytymiskartat. Kerättyä aineistoa tutkitaan puiston tilakäyttöjen kannalta sisällönanalyysia apuna käyttäen. Analyysissa Kaisaniemen puiston käyttäjät jaotellaan eri käyttäjätyyppeihin: ulkoilija, läpikulkija, oleilija, työskentelijä ja ei-käyttäjä. Varsinkin iltaisin puisto otetaan haltuun usean eri ryhmän toimesta. Merkittävin käyttäjätyyppi puistotilan kannalta ovat oleilijat, joihin voidaan tarkemmin määritellä miehet, tummaihoiset ja teini-ikäiset. Päivisin useammat käyttäjätyypit kuten läpikulkijat, urheilijat, oleilijat ja työskentelevät taistelevat haltuunotosta. Haltuunoton tulos määrittää puiston lopullisen tilan ja paljastaa käyttäjien väliset valtasuhteet. Tilakäytöt ovat suuressa roolissa Kaisaniemen puiston tilan tuottamisessa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The urban heat island phenomenon is the most well-known all-year-round urban climate phenomenon. It occurs in summer during the daytime due to the short-wave radiation from the sun and in wintertime, through anthropogenic heat production. In summertime, the properties of the fabric of city buildings determine how much energy is stored, conducted and transmitted through the material. During night-time, when there is no incoming short-wave radiation, all fabrics of the city release the energy in form of heat back to the urban atmosphere. In wintertime anthropogenic heating of buildings and traffic deliver energy into the urban atmosphere. The initial focus of Helsinki urban heat island was on the description of the intensity of the urban heat island (Fogelberg 1973, Alestalo 1975). In this project our goal was to carry out as many measurements as possible over a large area of Helsinki to give a long term estimate of the Helsinki urban heat island. Helsinki is a city with 550 000 inhabitants and located on the north shore of Finnish Bay of the Baltic Sea. Initially, comparison studies against long-term weather station records showed that our regular, but weekly, sampling of observations adequately describe the Helsinki urban heat island. The project covered an entire seasonal cycle over the 12 months from July 2009 to June 2010. The measurements were conducted using a moving platform following microclimatological traditions. Tuesday was selected as the measuring day because it was the only weekday during the one year time span without any public holidays. Once a week, two set of measurements, in total 104, were conducted in the heterogeneous temperature conditions of Helsinki city centre. In the more homogeneous suburban areas, one set of measurements was taken every second week, to give a total of 52.The first set of measurements took place before noon, and the second 12 hours, just prior to midnight. Helsinki Kaisaniemi weather station was chosen as the reference station. This weather station is located in a large park in the city centre of Helsinki. Along the measurement route, 336 fixed points were established, and the monthly air temperature differences to Kaisaniemi were calculated to produce monthly and annual maps. The monthly air temperature differences were interpolated 21.1 km by 18.1 km horizontal grid with 100 metre resolution residual kriging method. The following independent variables for the kriging interpolation method were used: topographical height, portion of sea area, portion of trees, fraction of built-up and not built-up area, volumes of buildings, and population density. The annual mean air temperature difference gives the best representation of the Helsinki urban heat island effect- Due to natural variability of weather conditions during the measurement campaign care must be taken when interpretation the results for the monthly values. The main results of this urban heat island research project are: a) The city centre of Helsinki is warmer than its surroundings, both on a monthly main basis, and for the annual mean, however, there are only a few grid points, 46 out of 38 191, which display a temperature difference of more than 1K. b) If the monthly spatial variation is air temperature differences is small, then usually the temperature difference between the city and the surroundings is also small. c) Isolated large buildings and suburban centres create their own individual heat island. d) The topographical influence on air temperature can generally be neglected for the monthly mean, but can be strong under certain weather conditions.