996 resultados para Kabata-Pendias, Alina: Trace elements from soil to human


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays we live in densely populated regions and this leads to many environmental issues. Among all pollutants that human activities originate, metals are relevant because they can be potentially toxic for most of living beings. We studied the fate of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in a vineyard environment analysing samples of plant, wine and soil. Sites were chosen considering the type of wine produced, the type of cultivation (both organic and conventional agriculture) and the geographic location. We took vineyards that cultivate the same grape variety, the Trebbiano). We investigated 5 vineyards located in the Ravenna district (Italy): two on the Lamone Valley slopes, one in the area of river-bank deposits near Ravenna city, then a farm near Lugo and one near Bagnacavallo in interfluve regions. We carried out a very detailed characterization of soils in the sites, including the analysis of: pH, electric conductivity, texture, total carbonate and extimated content of dolomite, active carbonate, iron from ammonium oxalate, Iron Deficiency Chlorosis Index (IDCI), total nitrogen and organic carbon, available phosphorous, available potassium and Cation Exchange Capacity (CEC). Then we made the analysis of the bulk chemical composition and a DTPA extraction to determine the available fraction of elements in soils. All the sites have proper ground to cultivate, with already a good amount of nutrients, such as not needing strong fertilisations, but a vineyard on hills suffers from iron deficiency chlorosis due to the high level of active carbonate. We found some soils with much silica and little calcium oxide that confirm the marly sandstone substratum, while other soils have more calcium oxide and more aluminium oxide that confirm the argillaceous marlstone substratum. We found some critical situations, such as high concentrations of Chromium, especially in the farm near Lugo, and we noticed differences between organic vineyards and conventional ones: the conventional ones have a higher enrichment in soils of some metals (Copper and Zinc). Each metal accumulates differently in every single part of grapevines. We found differences between hill plants and lowland ones: behaviors of plants in metal accumulations seems to have patterns. Metals are more abundant in barks, then in leaves or sometimes in roots. Plants seem trying to remove excesses of metal storing them in bark. Two wines have excess of acetic acid and one conventional farm produces wine with content of Zinc over the Italian law limit. We already found evidence of high values relating them with uncontaminated environments, but more investigations are suggested to link those values to their anthropogenic supplies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authigenic carbonates were collected from methane seeps at Hydrate Hole at 3113 m water depth and Diapir Field at 2417 m water depth on the northern Congo deep-sea fan during RV Meteor cruise M56. The carbonate samples analyzed here are nodules, mainly composed of aragonite and high-Mg calcite. Abundant putative microbial carbonate rods and associated pyrite framboids were recognized within the carbonate matrix. The d13C values of the Hydrate Hole carbonates range from -62.5 permil to -46.3 permil PDB, while the d13C values of the Diapir Field carbonate are somewhat higher, ranging from -40.7 permil to -30.7 permil PDB, indicating that methane is the predominant carbon source at both locations. Relative enrichment of 18O (d18O values as high as 5.2 permil PDB) are probably related to localized destabilization of gas hydrate. The total content of rare earth elements (REE) of 5% HNO3-treated solutions derived from carbonate samples varies from 1.6 ppm to 42.5 ppm. The shale-normalized REE patterns all display positive Ce anomalies (Ce/Ce* > 1.3), revealing that the carbonates precipitated under anoxic conditions. A sample from Hydrate Hole shows a concentric lamination, corresponding to fluctuations in d13C values as well as trace elements contents. These fluctuations are presumed to reflect changes of seepage flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed 33 Pliocene bulk sediment samples from Ocean Drilling Program Site 1085 in the Cape Basin, located offshore of western Africa in the Angola-Benguela Current system, for 17 major and trace elements, and interpreted their associations and temporal variations in the context of an allied data set of CaCO3, opal, and Corg. We base our interpretations on elemental ratios, accumulation rates, inter-element correlations, and several multi-element statistical techniques. On the basis of qualitative assessment of downhole changes in the distributions of P and Ba, utilized as proxies of export production, we conclude that highs in bulk and biogenic accumulation that occur at 3.2 Ma, 3.0 Ma, 2.4 Ma, and 2.25 Ma were caused by increases in export production as well as terrigenous flux, and record a greater sequestering of organic matter during these time periods. Studies of refractory elements and other indicator proxies (SiO2, Al2O3, TiO2, Fe2O3, MgO, V, Cr, Sr, and Zr) strongly suggest that the terrigenous component of the bulk sediment is composed of two compositional end-members, one being 'basaltic' in composition and the other similar to an 'average shale'. The basaltic end-member comprises approximately 10-15% of the total bulk sediment and its presence is consistent with the local geology of source material in the drainage basin of the nearby Orange River. The increase in bulk accumulation at 2.4 Ma appears to reflect a greater relative increase in basaltic input than the relative increase in shale-type input. Although studies such as this cannot precisely identify the transport mechanisms of the different terrigenous components, these results are most consistent with variations in sea level (and associated changes in shelf geometry and fluvial input) being responsible for the changing depositional conditions along the Angolan Margin during this time period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis details the findings of a study relating the transfer of 238U, 228Ra (232Th), 226Ra, and 137Cs from soil to vegetation in an Atlantic blanket bog, upland blanket bog and semi-natural grassland situated along the north-west coast of Ireland. The results of this study provide information on the uptake of these radionuclides by the indigenous vegetation found present in these ecosystems. The ecosystems chosen are internationally recognizable ecosystems and provide a wide variety of vegetation species and contrasting soil physiochemical properties which allow the influence of these parameters on radionuclide uptake to be assessed. The levels of radionuclides in the soil and vegetation were measured using gamma spectrometry, alpha spectrometry and ICP-MS. The nutrient status of the vegetation and soil physiochemical properties were measured using atomic absorption, flame photometry and other analytical techniques. The results of the study indicate that the uptake of 238U and 228Ra (232Th) by vegetation from all three ecosystems was negligible as the levels in all vegetation was below the limits of detection for the methods used in this study. These results appear to indicate that the vegetation studied do not possess the ability to accumulate significant levels of these radionuclides however this assumption cannot be upheld in the case of the Atlantic blanket bog as the levels in the soil of this ecosystem were too low for detection. Similar results were obtained for 226Ra uptake in both the Atlantic blanket bog and grassland for all vegetation with the exception of H. lanatus from the grassland ecosystem. Radium-226 uptake in upland blanket bog was higher and was detectable in the majority of vegetation indigenous to this ecosystem. Transfer factor values ranged from 0.07 to 2.35 and the TF values for E. tetralix were significantly higher than all other vegetation studied. This species of heather demonstrated the ability to accumulate 226Ra to a greater extent than all other vegetation. The uptake of 226Ra by upland blanket bog vegetation appears to be significantly influenced by a range of soil physiochemical properties. The nutrient status of the vegetation, in particular the calcium content in the vegetation appears to have a negative impact on the uptake of this radionuclide. Potassium-40 was detectable in all vegetation present in the three ecosystems and the levels in the grassland soil were significantly higher than the levels in both bogland soils. Transfer factor values for Atlantic blanket bog vegetation ranged from 0.9 to 13 .8 and were significantly higher in E. vaginatum in comparison to C. vulgaris. Potassium-40 TF values for upland blanket bog vegetation on average ranged from 1.4 for C. vulgaris (stems) to 5.2 for E. vaginatum and were statistically similar for all species of vegetation. Transfer factor values for grassland vegetation ranged from 0.7 to 3.8 and were also statistically similar for all species of vegetation indicating that the transfer of 40K to vegetation within the upland bog and grassland ecosystem is not dependent on plant species. Comparisons of 40K TF values for all three ecosystems indicate that the uptake in E. vaginatum from the Atlantic blanket bog was statistically higher than all other vegetation studied. This appears to indicate that E. vaginatum has the ability to accumulate 40K, however, this species of vegetation was also present in the upland blanket and did not demonstrate the same behaviour. The uptake of 40K by vegetation from all three ecosystems was significantly affected by a range of soil physiochemical properties and in some cases the results were contradictory in nature possibly indicating that the affect of these parameters on 40K uptake is species dependent. The most obvious trend in the data was the influence of soil CEC and magnesium levels in vegetation on 40K TF values. A positive correlation was apparent between the CEC of the soil and 40K uptake in vegetation from both the Atlantic blanket bog and grassland ecosystem. A similar trend was apparent between magnesium levels in vegetation and 40K TF values for the upland blanket bog and grassland vegetation. Caesium-13 7 levels were found to be significantly higher in the two bogland soils in comparison to the grassland soil and levels of 137Cs decreased with increasing soil depth. Transfer factor values for Atlantic blanket bog vegetation ranged from 1.9 to 9.6 and TF values were significantly higher in the leaves o f C. vulgaris in comparison to all other vegetation from this ecosystem. Caesium-13 7 TF values for the upland blanket bog vegetation on average ranged from 0.29 for E. tetralix to 1.6 for C. vulgaris. Uptake by the leaves of C. vulgaris was significantly higher than all other vegetation present thereby supporting the trend found within the Atlantic blanket bog vegetation. These results appear to indicate that the leaves of C. vulgaris have the ability to accumulate significant quantities of 137Cs and also that the uptake of 137Cs by this vegetation is dependent on plant compartment as the stems of this vegetation contained significantly lower levels than the leaves in both ecosystems. The uptake of 137Cs by grassland vegetation was very low and was only detectable in a fraction of the vegetation sampled. Caesium-137 TF values for grassland vegetation were in general lower than 0.02. The impact of soil physiochemical properties and nutrient status of vegetation on 137Cs uptake by vegetation appears to be complex and in some cases contradictory. The most apparent trend in the data was the positive influence of vegetation nutrients on 137Cs uptake in particular the magnesium levels present in the vegetation and to a lesser extent the calcium levels present. The results in general indicate that the uptake of 226Ra, 40K and 137Cs by the chosen vegetation is varied and complex and is significantly dependent on the species of vegetation, soil radionuclide concentration, soil physiochemical properties and the nutrient status of the vegetation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ingestion of a meal evokes a series of digestive processes, which consist of the essential functions of the digestive system: food transport, secretory activity, absorption of nutrients and the expulsion of undigested residues do not absorbed. The gastrointestinal chemosensitivity is characterized by cellular elements of the endocrine gastrointestinal mucosa and nerve fibers, in particular of vagal nature. A wide range of mediators endocrine and/or paracrine can be released from various endocrine cells in response to nutrients in the diet. These hormones, in addition to their direct activity, act through specific receptors activating some of the most important functions in the control of energy intake and energy homeostasis in the body. For integration of this complex system of control of gastrointestinal chemosensitivity, recent evidence demonstrates the presence of taste receptors (TR) belonging to the family of G proteins coupled receptor expressed in the mucosa of the gastrointestinal tract of different mammals and human. This thesis is divided into several research projects that have been conceived in order to clarify the relationship between TR and nutrients. To define this relationship I have used various scientific approaches, which have gone on to evaluate changes in signal molecules of TR, in particular of the α-transducin in the fasting state and after refeeding with standard diet in the gastrointestinal tract of the pig, the mapping of the same molecule signal in the gastrointestinal tract of fish (Dicentrarchus labrax), the signaling pathway of bitter TR in the STC-1 endocrine cell line and finally the involvement of bitter TR in particular of T2R38 in patients with an excessive caloric intake. The results showed how there is a close correlation between nutrients, TR and hormonal release and how they are useful both in taste perception but also likely to be involved in chronic diseases such as obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives—Exercise is known to cause changes in the concentration of salivary components such as amylase, Na, and Cl. The aim of this investigation was to evaluate the eVect of physical exercise on the levels of trace elements and electrolytes in whole (mixed) saliva. Methods—Forty subjects performed a maximal exercise test on a cycle ergometer. Samples of saliva were obtained before and immediately after the exercise test. Sample concentrations of Fe, Mg, Sc, Cr, Mn, Co, Cu, Zn, Se, Sr, Ag, Sb, Cs, and Hg were determined by inductively coupled plasma mass spectrometry and concentrations of Ca and Na by atomic absorption spectrometry. Results—After exercise, Mg and Na levels showed a significant increase (p<0.05) while Mn levels fell (p<0.05). Zn/Cu molar ratios were unaVected by exercise. Conclusions—Intense physical exercise induced changes in the concentrations of only three (Na, Mg, and Mn) of the 16 elements analysed in the saliva samples. Further research is needed to assess the clinical implications of these findings.