936 resultados para KRAS mutation
Resumo:
Evidence that activating mutations of the KRAS oncogene abolish the response to anti-epidermal growth factor receptor therapy has revolutionized the treatment of advanced colorectal cancer. This has resulted in the urgent demand for KRAS mutation testing in the clinical setting to aid choice of therapy. The Am of this study was to evaluate six different KRAS mutation detection methodologies on two series of primary colorectal cancer samples. Two series of 80 frozen and 74 formalin-fixed paraffin-embedded tissue samples were sourced and DNA was extracted at a central site before distribution to seven different testing sites. KRAS mutations in codons 12 and 13 were assessed by using single strand conformation polymorphism analysis, pyrosequencing, high resolution melting analysis, dideoxy sequencing, or the commercially available TIB Molbiol (Berlin, Germany) or DxS Diagnostic innovations (Manchester, UK) kits. in frozen tissue samples, concordance in KRAS status (defined as consensus in at least five assays) was observed in 66/80 (83%) cases. In par-affin tissue, concordance was 46/74 (63%) if all assays were considered or 71/74 (96%) using the five best performing assays. These results demonstrate that a variety of detection methodologies are suitable and provide comparable results for KRAS mutation analysis of clinical samples. (J Mol Diagn 2009, 11:543-552; DOI: 10.2353/jmoldx.2009.090057)
Resumo:
Nonsmall cell lung cancer samples from the European Early Lung Cancer biobank were analysed to assess the prognostic significance of mutations in the TP53, KRAS and EGFR genes. The series included 11 never-smokers, 86 former smokers, 152 current smokers and one patient without informed smoking status. There were 110 squamous cell carcinomas (SCCs), 133 adenocarcinomas (ADCs) and seven large cell carcinomas or mixed histologies. Expression of p53 was analysed by immunohistochemistry. DNA was extracted from frozen tumour tissues. TP53 mutations were detected in 48.8% of cases and were more frequent among SCCs than ADCs (p<0.0001). TP53 mutation status was not associated with prognosis. G to T transversions, known to be associated with smoking, were marginally more common among patients who developed a second primary lung cancer or recurrence/metastasis (progressive disease). EGFR mutations were almost exclusively found in never-smoking females (p=0.0067). KRAS mutations were detected in 18.5% of cases, mainly ADC (p<0.0001), and showed a tendency toward association with progressive disease status. These results suggest that mutations are good markers of different aetiologies and histopathological forms of lung cancers but have little prognostic value, with the exception of KRAS mutation, which may have a prognostic value in ADC. Copyright©ERS 2012.
Resumo:
RUNX3 aberrations play a pivotal role in the oncogenesis of breast, gastric, colon, skin and lung tissues. The aim of this study was to characterize further the expression of RUNX3 in lung cancers. To achieve this, a lung cancer tissue microarray (TMA), frozen lung cancer tissues and lung cell lines were examined for RUNX3 expression by immunohistochemistry, while the TMA was also examined for EGFR and p53 expression. RUNX3 promoter methylation status, and EGFR and KRAS mutation status were also investigated. Inactivation of RUNX3 was observed in 70% of the adenocarcinoma samples, and this was associated with promoter hypermethylation but not biased to EGFR/KRAS mutations. Our results suggest a central role of RUNX3 downregulation in pulmonary adenocarcinoma, which may not be dependent of other established cancer-causing pathways and may have important diagnostic and screening implications.
Resumo:
PURPOSE: recent studies have found that KRAS mutations predict resistance to monoclonal antibodies targeting the epidermal growth factor receptor in metastatic colorectal cancer (mCRC). A polymorphism in a let-7 microRNA complementary site (lcs6) in the KRAS 3' untranslated region (UTR) is associated with an increased cancer risk in non-small-cell lung cancer and reduced overall survival (OS) in oral cancers. We tested the hypothesis whether this polymorphism may be associated with clinical outcome in KRAS wild-type (KRASwt) mCRC patients treated with cetuximab monotherapy.
PATIENTS AND METHODS: the presence of KRAS let-7 lcs6 polymorphism was evaluated in 130 mCRC patients who were enrolled in a phase II study of cetuximab monotherapy (IMCL-0144). Genomic DNA was extracted from dissected formalin-fixed paraffin-embedded tumor tissue, KRAS mutation status and polymorphism were assessed using direct sequencing and PCR restriction fragment length polymorphism technique.
RESULTS: KRAS let-7 lcs6 polymorphism was found to be related to object response rate (ORR) in mCRC patients whose tumors had KRASwt. The 12 KRASwt patients harboring at least a variant G allele (TG or GG) had a 42% ORR compared with a 9% ORR in 55 KRASwt patients with let-7 lcs6 TT genotype (P = 0.02, Fisher's exact test). KRASwt patients with TG/GG genotypes had trend of longer median progression-free survival (3.9 versus 1.3 months) and OS (10.7 versus 6.4 months) compared to those with TT genotypes.
CONCLUSIONS: these results are the first to indicate that the KRAS 3'UTR polymorphism may predict for cetuximab responsiveness in KRASwt mCRC patients, which warrants validation in other clinical trials.
Resumo:
BACKGROUND: Cetuximab has shown significant clinical activity in metastatic colon cancer. However, cetuximab-containing neoadjuvant chemoradiation has not been shown to improve tumor response in locally advanced rectal cancer patients in recent phase I/II trials. We evaluated functional germline polymorphisms of genes involved in epidermal growth factor receptor pathway, angiogenesis, antibody-dependent cell-mediated cytotoxicity, DNA repair, and drug metabolism, for their potential role as molecular predictors for clinical outcome in locally advanced rectal cancer patients treated with preoperative cetuximab-based chemoradiation.
METHODS: 130 patients (74 men and 56 women) with locally advanced rectal cancer (4 with stage II, 109 with stage III, and 15 with stage IV, 2 unknown) who were enrolled in phase I/II clinical trials treated with cetuximab-based chemoradiation in European cancer centers were included. Genomic DNA was extracted from formalin-fixed paraffin-embedded tumor samples and genotyping was done by using PCR-RFLP assays. Fisher's exact test was used to examine associations between polymorphisms and complete pathologic response (pCR) that was determined by a modified Dworak classification system (grade III vs. grade IV: complete response).
RESULTS: Patients with the epidermal growth factor (EGF) 61 G/G genotype had pCR of 45% (5/11), compared with 21% (11/53) in patients heterozygous, and 2% (1/54) in patients homozygous for the A/A allele (P < 0.001). In addition, this association between EGF 61 G allele and pCR remained significant (P = 0.019) in the 59 patients with wild-type KRAS.
CONCLUSION: This study suggested EGF A+61G polymorphism to be a predictive marker for pCR, independent of KRAS mutation status, to cetuximab-based neoadjuvant chemoradiation of patients with locally advanced rectal cancer.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Noonan syndrome (NS) and Noonan-related disorders [cardio-facio-cutaneous (CFC), Costello, Noonan syndrome with multiple lentigines (NS-ML), and neurofibromatosis-Noonan syndromes (NFNS)] are a group of developmental disorders caused by mutations in genes of the RAS/MAPK pathway. Mutations in the KRAS gene account for only a small proportion of affected Noonan and CFC syndrome patients that present an intermediate phenotype between these two syndromes, with more frequent and severe intellectual disability in NS and less ectodermal involvement in CFC syndrome, as well as atypical clinical findings such as craniosynostosis. Recently, the first familial case with a novel KRAS mutation was described. We report on a second vertical transmission (a mother and two siblings) with a novel mutation (p.M72L), in which the proband has trigonocephaly and the affected mother and sister, prominent ectodermal involvement. Metopic suture involvement has not been described before, expanding the main different cranial sutures which can be affected in NS and KRAS gene mutations. The gene alteration found in the studied family is in close proximity to the one reported in the other familial case (close to the switch II region of the G-domain), suggesting that this specific region of the gene could have less severe effects on intellectual ability than the other KRAS gene mutations found in NS patients and be less likely to hamper reproductive fitness. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Lung cancer is the leading cause of cancer deaths worldwide. The development of improved systemic therapy is needed for the most common form of the disease, non-small cell lung cancer (NSCLC). This will depend on the identification of valid molecular targets. Recent studies point to the receptor tyrosine kinase EphA2 as a novel therapeutic target. Overexpression of EphA2 has been demonstrated in a number of epithelial cancers, and its expression has been associated with more severe disease. Regulation of EphA2 in cancer is poorly understood. Recently, regulation of EphA2 by EGFR and KRAS has been reported in a number of in vitro models, but no examination of this relationship has been undertaken in patient tumors. Because of the established importance of EGFR and KRAS in NSCLC, we have investigated the relationship between these mutations and EphA2 in NSCLC patient tissues and cell lines. The significance of Epha2 expression was further examined by testing for correlation with survival, metastases, histology, and smoking status in patient tissues, and tumor cell proliferation and migration in vitro. EphA2 expression was analyzed in by immunohistochemistry in tissue microarray (TMA) format utilizing surgically resected lung cancer specimens. EGFR and KRAS mutation status was determined for the majority of specimens. EphA2 expression was detected in >90% of NSCLC tumors. High EphA2 expression was associated with decreased time to recurrence and metastases, and predicted poorer progression free and overall survival. Expression of EphA2 was positively correlated with activated EGFR and with KRAS mutation. Expression of EphA2 was also positively correlated with a history of smoking. There was no association between gender or histology and EphA2 expression. In H322 cells, activation of EGFR or KRAS resulted in an increase in EphA2 protein expression. Downregulation of EphA2 resulted in decreased proliferation in a clonal growth assay, and inhibited migration in a wound healing assay, in a panel of cell lines. The decrease in proliferation correlated with a transient decrease in the levels of phospho-ERK, a downstream effector of EGFR and KRAS. Based on these data, the potential of EphA2 as a therapeutic target for NSCLC should be further investigated. ^
Resumo:
Despite having been identified over thirty years ago and definitively established as having a critical role in driving tumor growth and predicting for resistance to therapy, the KRAS oncogene remains a target in cancer for which there is no effective treatment. KRas is activated b y mutations at a few sites, primarily amino acid substitutions at codon 12 which promote a constitutively active state. I have found that different amino acid substitutions at codon 12 can activate different KRas downstream signaling pathways, determine clonogenic growth potential and determine patient response to molecularly targeted therapies. Computer modeling of the KRas structure shows that different amino acids substituted at the codon 12 position influences how KRas interacts with its effecters. In the absence of a direct inhibitor of mutant KRas several agents have recently entered clinical trials alone and in combination directly targeting two of the common downstream effecter pathways of KRas, namely the Mapk pathway and the Akt pathway. These inhibitors were evaluated for efficacy against different KRAS activating mutations. An isogenic panel of colorectal cells with wild type KRas replaced with KRas G12C, G12D, or G12V at the endogenous loci differed in sensitivity to Mek and Akt inhibition. In contrast, screening was performed in a broad panel of lung cell lines alone and no correlation was seen between types of activating KRAS mutation due to concurrent oncogenic lesions. To find a new method to inhibit KRAS driven tumors, siRNA screens were performed in isogenic lines with and without active KRas. The knockdown of CNKSR1 (CNK1) showed selective growth inhibition in cells with an oncogenic KRAS. The deletion of CNK1 reduces expression of mitotic cell cycle proteins and arrests cells with active KRas in the G1 phase of the cell cycle similar to the deletion of an activated KRas regardless of activating substitution. CNK1 has a PH domain responsible for localizing it to membrane lipids making KRas potentially amenable to inhibition with small molecules. The work has identified a series of small molecules capable of binding to this PH domain and inhibiting CNK1 facilitated KRas signaling.
Resumo:
Background: Lethal-7 (let-7) is a tumour suppressor miRNA which acts by down-regulating several oncogenes including KRAS. A single-nucleotide polymorphism (rs61764370, T > G base substitution) in the let-7 complementary site 6 (LCS-6) of KRAS mRNA has been shown to predict prognosis in early-stage colorectal cancer (CRC) and benefit from anti-epidermal growth factor receptor monoclonal antibodies in metastatic CRC. Patients and methods: We analysed rs61764370 in EXPERT-C, a randomised phase II trial of neoadjuvant CAPOX followed by chemoradiotherapy, surgery and adjuvant CAPOX plus or minus cetuximab in locally advanced rectal cancer. DNA was isolated from formalin-fixed paraffin-embedded tumour tissue and genotyped using a PCR-based commercially available assay. Kaplan–Meier method and Cox regression analysis were used to calculate survival estimates and compare treatment arms. Results: A total of 155/164 (94.5%) patients were successfully analysed, of whom 123 (79.4%) and 32 (20.6%) had the LCS-6 TT and LCS-6 TG genotype, respectively. Carriers of the G allele were found to have a statistically significantly higher rate of complete response (CR) after neoadjuvant therapy (28.1% versus 10.6%; P = 0.020) and a trend for better 5-year progression-free survival (PFS) [77.4% versus 64.5%: hazard ratio (HR) 0.56; P = 0.152] and overall survival (OS) rates (80.3% versus 71.9%: HR 0.59; P = 0.234). Both CR and survival outcomes were independent of the use of cetuximab. The negative prognostic effect associated with KRAS mutation appeared to be stronger in patients with the LCS-6 TT genotype (HR PFS 1.70, P = 0.078; HR OS 1.79, P = 0.082) compared with those with the LCS-6 TG genotype (HR PFS 1.33, P = 0.713; HR OS 1.01, P = 0.995). Conclusion: This analysis suggests that rs61764370 may be a biomarker of response to neoadjuvant treatment and an indicator of favourable outcome in locally advanced rectal cancer possibly by mitigating the poor prognosis of KRAS mutation. In this setting, however, this polymorphism does not appear to predict cetuximab benefit.
Resumo:
BACKGROUND: KRAS mutation testing is required to select patients with metastatic colorectal cancer (CRC) to receive anti-epidermal growth factor receptor antibodies, but the optimal KRAS mutation test method is uncertain. METHODS: We conducted a two-site comparison of two commercial KRAS mutation kits - the cobas KRAS Mutation Test and the Qiagen therascreen KRAS Kit - and Sanger sequencing. A panel of 120 CRC specimens was tested with all three methods. The agreement between the cobas test and each of the other methods was assessed. Specimens with discordant results were subjected to quantitative massively parallel pyrosequencing (MPP). DNA blends were tested to determine detection rates at 5% mutant alleles. RESULTS: Reproducibility of the cobas test between sites was 98%. Six mutations were detected by cobas that were not detected by Sanger, and five were confirmed by MPP. The cobas test detected eight mutations which were not detected by the therascreen test, and seven were confirmed by MPP. Detection rates with 5% mutant DNA blends were 100% for the cobas and therascreen tests and 19% for Sanger. CONCLUSION: The cobas test was reproducible between sites, and detected several mutations that were not detected by the therascreen test or Sanger. Sanger sequencing had poor sensitivity for low levels of mutation.