3 resultados para KPls
Resumo:
Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square correlation coefficient leave-group-out cross validation (LGO-CV) (Q²) between experimental and predicted RI for training set by GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool for quantitative structure-retention relationship (QSRR) studies.
Resumo:
El proyecto consiste principalmente en definir y desarrollar una herramienta de gestión de metadatos de negocio para los indicadores clave de rendimiento. Actualmente no existe ninguna herramienta BI que permita almacenar información de negocio más allá de las especificaciones técnicas. Dicha aplicación, actuará como repositorio centralizado de la definición de los indicadores clave de negocio de la compañia incluyendo información del metadato del indicador, (tal como, responsable del indicador, dimensiones de análisis, profundidad histórica, frecuencia de actualización, procesos de negocio implicados, etc.).
Resumo:
Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.