994 resultados para KINESIN SUPERFAMILY PROTEIN
Resumo:
Intracellular transport is essential for morphogenesis and functioning of the cell. The kinesin superfamily proteins (KIFs) have been shown to transport membranous organelles and protein complexes in a microtubule- and ATP-dependent manner. More than 30 KIFs have been reported in mice. However, the nomenclature of KIFs has not been clearly established, resulting in various designations and redundant names for a single KIF. Here, we report the identification and classification of all KIFs in mouse and human genome transcripts. Previously unidentified murine KIFs were found by a PCR-based search. The identification of all KIFs was confirmed by a database search of the total human genome. As a result, there are a total of 45 KIFs. The nomenclature of all KIFs is presented. To understand the function of KIFs in intracellular transport in a single tissue, we focused on the brain. The expression of 38 KIFs was detected in brain tissue by Northern blotting or PCR using cDNA. The brain, mainly composed of highly differentiated and polarized cells such as neurons and glia, requires a highly complex intracellular transport system as indicated by the increased number of KIFs for their sophisticated functions. It is becoming increasingly clear that the cell uses a number of KIFs and tightly controls the direction, destination, and velocity of transportation of various important functional molecules, including mRNA. This report will set the foundation of KIF and intracellular transport research.
Resumo:
We previously reported that KIF3A and KIF3B form a heterodimer that functions as a microtubule-based fast anterograde translocator of membranous organelles. We have also shown that this KIF3A/3B forms a complex with other associated polypeptides, named kinesin superfamily-associated protein 3 (KAP3). In the present study, we purified KAP3 protein by immunoprecipitation using anti-KIF3B antibody from mouse testis. Microsequencing was carried out, and we cloned the full-length KAP3 cDNA from a mouse brain cDNA library. Two isoforms of KAP3 exist [KAP3A (793 aa) and KAP3B (772 aa)], generated by alternative splicing in the carboxyl terminus region. Their amino acid sequences have no homology with those of any other known proteins, and prediction of their secondary structure indicated that almost the entire KAP3 molecule is alpha-helical. We produced recombinant KAP3 and KIF3A/3B using a baculovirus-Sf9 expression system. A reconstruction study in Sf9 cells revealed that KAP3 is a globular protein that binds to the tail domain of KIF3A/3B. The immunolocalization pattern of KAP3 was similar to that of KIF3A/3B in nerve cells. In addition, we found that KAP3 does not affect the motor activity of KIF3A/3B. KAP3 was associated with a membrane-bound form of KIF3A/3B in a fractional immunoprecipitation experiment, and since the KIF3 complex was found to bind to membranous organelles in an EM study, KAP3 may regulate membrane binding of the KIF3 complex.
Resumo:
The kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule-based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently being studied in clinical trials and provide new opportunities for the development of novel anticancer therapeutics. RNA interference (RNAi) may represent a powerful strategy to interfere with key molecular pathways involved in cancer. In this study, we have established an efficient method for intratumoral delivery of siRNA. We evaluated short interfering RNA (siRNA) duplexes targeting luciferase as surrogate marker or KSP sequence. To examine the potential feasibility of RNAi therapy, the siRNA was transfected into pre-established lesions by means of intratumor electro-transfer of RNA therapeutics (IERT). This technology allowed cell permeation of the nucleic acids and to efficiently knock down gene expression, albeit transiently. The KSP-specific siRNA drastically reduced outgrowth of subcutaneous melanoma and ovarian cancer lesions. Our results show that intratumoral electro-transfer of siRNA is feasible and KSP-specific siRNA may provide a novel strategy for therapeutic intervention. J. Cell. Physiol. 228: 58-64, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
KIF (kinesin superfamily) proteins are microtubule-dependent molecular motors that play important roles in intracellular transport and cell division. The extent to which KIFs are involved in various transporting phenomena, as well as their regulation mechanism, are unknown. The identification of 16 new KIFs in this report doubles the existing number of KIFs known in the mouse. Conserved nucleotide sequences in the motor domain were amplified by PCR using cDNAs of mouse nervous tissue, kidney, and small intestine as templates. The new KIFs were studied with respect to their expression patterns in different tissues, chromosomal location, and molecular evolution. Our results suggest that (i) there is no apparent tendency among related subclasses of KIFs of cosegregation in chromosomal mapping, and (ii) according to their tissue distribution patterns, KIFs can be divided into two classes–i.e., ubiquitous and specific tissue-dominant. Further characterization of KIFs may elucidate unknown fundamental phenomena underlying intracellular transport. Finally, we propose a straightforward nomenclature system for the members of the mouse kinesin superfamily.
Resumo:
Subcellular targeting and the activity of facilitative glucose transporters are likely to be regulated by interactions with cellular proteins. This report describes the identification and characterization of a protein, GLUT1 C-terminal binding protein (GLUT1CBP), that binds via a PDZ domain to the C terminus of GLUT1. The interaction requires the C-terminal four amino acids of GLUT1 and is isoform specific because GLUT1CBP does not interact with the C terminus of GLUT3 or GLUT4. Most rat tissues examined contain both GLUT1CBP and GLUT1 mRNA, whereas only small intestine lacked detectable GLUT1CBP protein. GLUT1CBP is also expressed in primary cultures of neurons and astrocytes, as well as in Chinese hamster ovary, 3T3-L1, Madin–Darby canine kidney, Caco-2, and pheochromocytoma-12 cell lines. GLUT1CBP is able to bind to native GLUT1 extracted from cell membranes, self-associate, or interact with the cytoskeletal proteins myosin VI, α-actinin-1, and the kinesin superfamily protein KIF-1B. The presence of a PDZ domain places GLUT1CBP among a growing family of structural and regulatory proteins, many of which are localized to areas of membrane specialization. This and its ability to interact with GLUT1 and cytoskeletal proteins implicate GLUT1CBP in cellular mechanisms for targeting GLUT1 to specific subcellular sites either by tethering the transporter to cytoskeletal motor proteins or by anchoring the transporter to the actin cytoskeleton.
Resumo:
Members of the MKLP1 subfamily of kinesin motor proteins localize to the equatorial region of the spindle midzone and are capable of bundling antiparallel microtubules in vitro. Despite these intriguing characteristics, it is unclear what role these kinesins play in dividing cells, particularly within the context of a developing embryo. Here, we report the identification of a null allele of zen-4, an MKLP1 homologue in the nematode Caenorhabditis elegans, and demonstrate that ZEN-4 is essential for cytokinesis. Embryos deprived of ZEN-4 form multinucleate single-celled embryos as they continue to cycle through mitosis but fail to complete cell division. Initiation of the cytokinetic furrow occurs at the normal time and place, but furrow propagation halts prematurely. Time-lapse recordings and microtubule staining reveal that the cytokinesis defect is preceded by the dissociation of the midzone microtubules. We show that ZEN-4 protein localizes to the spindle midzone during anaphase and persists at the midbody region throughout cytokinesis. We propose that ZEN-4 directly cross-links the midzone microtubules and suggest that these microtubules are required for the completion of cytokinesis.
Resumo:
Eg5, a member of the bimC subfamily of kinesin-like microtubule motor proteins, localizes to spindle microtubules in mitosis but not to interphase microtubules. We investigated the molecular basis for spindle localization by transient transfection of Xenopus A6 cells with myc-tagged derivatives of Eg5. Expressed at constitutively high levels from a cytomegalovirus promoter, mycEg5 protein is cytoplasmic throughout interphase, begins to bind microtubules in early prophase, and remains localized to spindle and/or midbody microtubules through mitosis to the end of telophase. Both N- and C-terminal regions of Eg5 are required for this cell-cycle-regulated targeting. Eg5 also contains within its C-terminal domain a sequence conserved among bimC subfamily proteins that includes a potential p34cdc2 phosphorylation site. We show that mutation of a single threonine (T937) within this site to nonphosphorylatable alanine abolishes localization of the mutant protein to the spindle, whereas mutation of T937 to serine preserves spindle localization. We hypothesize that phosphorylation of Eg5 may regulate its localization to the spindle in the cell cycle.
Resumo:
Array-CGH enables the detection of submicroscopic chromosomal deletions and duplications and leads to an accurate delineation of the imbalances, raising the possibility of correlating genotype to phenotype and mapping minimal critical regions associated with particular patterns of clinical features. We report here on four patients sharing common clinical features (psychomotor retardation, coarse facies and ocular anomalies), with proximal 5q deletions identified by oligo array-CGH. The deletions range from 5.75 to 17.26-Mb in size and occurred de novo. A common 2.63-Mb region between the deletions described here can be defined in 5q12.1 (59,390,122-62,021,754 bp bp from 5pter, hg18) and includes 12 genes. Among them, KIF2A, which encodes a kinesin superfamily protein, is a particularly interesting candidate for the phenotype, as it suppresses the growth of axonal collateral branches and is involved in normal brain development. Ocular defects, albeit unspecific, seem to be common in the 5q12.1 deletion. Identification of additional cases of deletions involving the 5q12.1 region will allow more accurate genotype-phenotype correlations. (C) 2011 Wiley-Liss, Inc.
Resumo:
The cellular slime mold Dictyostelium discoideum is an attractive system for studying the roles of microtubule-based motility in cell development and differentiation. In this work, we report the first molecular characterization of kinesin-related proteins (KRPs) in Dictyostelium. A PCR-based strategy was used to isolate DNA fragments encoding six KRPs, several of which are induced during the developmental program that is initiated by starvation. The complete sequence of one such developmentally regulated KRP (designated K7) was determined and found to be a novel member of the kinesin superfamily. The motor domain of K7 is most similar to that of conventional kinesin, but unlike conventional kinesin, K7 is not predicted to have an extensive α-helical coiled-coil domain. The nonmotor domain is unusual and is rich in Asn, Gln, and Thr residues; similar sequences are found in other developmentally regulated genes in Dictyostelium. K7, expressed in Escherichia coli, supports plus end–directed microtubule motility in vitro at a speed of 0.14 μm/s, indicating that it is a bona fide motor protein. The K7 motor is found only in developing cells and reaches a peak level of expression between 12 and 16 h after starvation. By immunofluorescence microscopy, K7 localizes to a membranous perinuclear structure. To examine K7 function, we prepared a null cell line but found that these cells show no gross developmental abnormalities. However, when cultivated in the presence of wild-type cells, the K7-null cells are mostly absent from the prestalk zone of the slug. This result suggests that in a population composed largely of wild-type cells, the absence of the K7 motor protein interferes either with the ability of the cells to localize to the prestalk zone or to differentiate into prestalk cells.
Resumo:
Proteins of the kinesin superfamily define a class of microtubule-dependent motors that play crucial roles in cell division and intracellular transport. To study the molecular mechanism of axonal transport, a cDNA encoding a new kinesin-like protein called KIF3C was cloned from a mouse brain cDNA library. Sequence and secondary structure analysis revealed that KIF3C is a member of the KIF3 family. In contrast to KIF3A and KIF3B, Northern and Western analysis indicated that KIF3C expression is highly enriched in neural tissues such as brain, spinal cord, and retina. When anti-KIF3C antibodies were used to stain the cerebellum, the strongest signal came from the cell bodies and dendrites of Purkinje cells. In retina, anti-KIF3C mainly stains the ganglion cells. Immunolocalization showed that the KIF3C motor in spinal cord and sciatic nerve is mainly localized in cytoplasm. In spinal cord, the KIF3C staining was punctate; double labeling with anti-giantin and anti-KIF3C showed a clear concentration of the motor protein in the Golgi complex. Staining of ligated sciatic nerves demonstrated that the KIF3C motor accumulated at the proximal side of the ligated nerve, which suggests that KIF3C is an anterograde motor. Immunoprecipitation experiments revealed that KIF3C and KIF3A, but not KIF3B, were coprecipitated. These data, combined with previous data from other labs, indicate that KIF3C and KIF3B are “variable” subunits that associate with a common KIF3A subunit, but not with each other. Together these results suggest that KIF3 family members combinatorially associate to power anterograde axonal transport.
Resumo:
The male gametophyte of the semi-aquatic fern, Marsilea vestita, produces multiciliated spermatozoids in a rapid developmental sequence that is controlled post-transcriptionally when dry microspores are placed in water. Development can be divided into two phases, mitosis and differentiation. During the mitotic phase, a series of nine successive division cycles produce 7 sterile cells and 32 spermatids in 4.5-5 hours. During the next 5-6 hours, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ~140 cilia. This document focuses on the role of motor proteins in the regulation of male gametophyte development and during ciliogenesis. In order to study the mechanisms that regulate spermatogenesis, RNAseq was used to generate a reference transcriptome that allowed us to assess the abundance of transcripts at different stages of development. Over 120 kinesin-like sequences were identified in the transcriptome that represent 56 unique kinesin transcripts. Members of the kinesin-2, -4, -5, -7, -8, -9, -12, -13, and -14 families, in addition to several plant specific and ‘orphan’ kinesins are present. Most (91%) of these kinesin transcripts change in abundance throughout gametophyte development, with 52% of kinesin mRNAs enriched during the mitotic phase and 39% enriched during differentiation. Functional analyses show that the temporal regulation of kinesin transcripts during gametogenesis directly correlates with kinesin protein function. Specifically, Marsilea makes one kinesin-2 (MvKinesin-2) and two kinesin-9 (MvKinesin-9A and MvKinesin-9B) transcripts, which are present during spermatid differentiation and ciliogenesis. Silencing experiments showed that MvKinesin-2 and MvKinesin-9A are required for ciliogenesis and motility in the Marsilea male gametophyte; however, these kinesins display atypical roles during these processes. In contrast, spermatozoids produced after the silencing of MvKinesin-9B exhibit normal morphology. MvKinesin-2 is necessary for cytokinesis as well as for regulating ciliary length and MvKinesin-9A is needed for the correct orientation of basal bodies, events not typically associated with these proteins. In addition, Marsilea makes motile, ciliated gametophytes without the help of IFT dynein, outer arm dynein, or the BBsome. These results are the first to investigate the kinesin-linked mechanisms that regulate ciliogenesis in a land plant.
Resumo:
A gene (NhKIN1) encoding a kinesin was cloned from Nectria haematococca genomic DNA by polymerase chain reaction amplification, using primers corresponding to conserved regions of known kinesin-encoding genes. Sequence analysis showed that NhKIN1 belongs to the subfamily of conventional kinesins and is distinct from any of the currently designated kinesin-related protein subfamilies. Deletion of NhKIN1 by transformation-mediated homologous recombination caused several dramatic phenotypes: a 50% reduction in colony growth rate, helical or wavy hyphae with reduced diameter, and subcellular abnormalities including withdrawal of mitochondria from the growing hyphal apex and reduction in the size of the Spitzenkörper, an apical aggregate of secretory vesicles. The effects on mitochondria and Spitzenkörper were not due to altered microtubule distribution, as microtubules were abundant throughout the length of hyphal tip cells of the mutant. The rate of spindle elongation during anaphase B of mitosis was reduced 11%, but the rate was not significantly different from that of wild type. This lack of a substantial mitotic phenotype is consistent with the primary role of the conventional kinesins in organelle motility rather than mitosis. Our results provide further evidence that the microtubule-based motility mechanism has a direct role in apical transport of secretory vesicles and the first evidence for its role in apical transport of mitochondria in a filamentous fungus. They also include a unique demonstration that a microtubule-based motor protein is essential for normal positioning of the Spitzenkörper, thus providing a new insight into the cellular basis for the aberrant hyphal morphology.
Resumo:
The isozyme form of eukaryotic initiation factor 4F [eIF-(iso)4F] from wheat germ is composed of a p28 subunit that binds the 7-methylguanine cap of mRNA and a p86 subunit having unknown function. The p86 subunit was found to have limited sequence similarity to a kinesin-like protein encoded by the katA gene of Arabidopsis thaliana. Native wheat germ eIF-(iso)4F and bacterially expressed p86 subunit and p86-p28 complex bound to taxol-stabilized maize microtubules (MTs) in vitro. Binding saturation occurred at 1 mol of p86 per 5-6 mol of polymerized tubulin dimer, demonstrating a substoichiometric interaction of p86 with MTs. No evidence was found for a direct interaction of the p28 subunit with MTs. Unlike kinesin, cosedimentation of eIF-(iso)4F with MTs was neither reduced by MgATP nor enhanced by adenosine 5'-[gamma-imido]triphosphate. Both p86 subunit and p86-p28 complex induced the bundling of MTs in vitro. The p86 subunit was immunolocalized to the cytosol in root maize cells and existed in three forms: fine particles, coarse particles, and linear patches. Many coarse particles and linear patches were colocalized or closely associated with cortical MT bundles in interphase cells. The results indicate that the p86 subunit of eIF-(iso)4F is a MT-associated protein that may simultaneously link the translational machinery to the cytoskeleton and regulate MT disposition in plant cells.
Resumo:
We isolated and sequenced the first known cytochrome P450 gene and pseudogene from an arachnid, the cattle tick, Boophilus microplus. Bath the gene and pseudogene belong to the family CYP4, but a new subfamily, CYP4W, had to be created for these genes because they are substantially different to other CYP4 genes. The gene, CPP4W1, has greatest homology with CYP4C1 from a cockroach, Blaberus discoidalis. The predicted molecular weight of the protein encoded by CYP4W1 (63 KDa) is greater than that of the other CYP4 genes. The pseudogene, CYP4W1P, is probably a processed pseudogene derived from the functional gene CYP4W1. This is only the third CYP processed pseudogene to be identified. The pseudogene is 98% identical to the functional gene, CYP4W1, therefore we hypothesise that this pseudogene evolved recently from the functional gene. The CYP4 genes from arthropods have diverged from each other more than those of mammals; consequently the phylogeny of the arthropod genes could not be resolved. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
CENP-E, a kinesin-like protein that is known to associate with kinetochores during all phases of mitotic chromosome movement, is shown here to be a component of meiotic kinetochores as well. CENP-E is detected at kinetochores during metaphase I in both mice and frogs, and, as in mitosis, is relocalized to the midbody during telophase. CENP-E function is essential for meiosis I because injection of an antibody to CENP-E into mouse oocytes in prophase completely prevented progression of those oocytes past metaphase I. Beyond this, CENP-E is modified or masked during the natural, Mos-dependent, cell cycle arrest that occurs at metaphase II, although it is readily detectable at the kinetochores in metaphase II oocytes derived from mos-deficient (MOS−/−) mice that fail to arrest at metaphase II. This must reflect a masking of some CENP-E epitopes, not the absence of CENP-E, in meiosis II because a different polyclonal antibody raised to the tail of CENP-E detects CENP-E at kinetochores of metaphase II-arrested eggs and because CENP-E reappears in telophase of mouse oocytes activated in the absence of protein synthesis.