25 resultados para KALIURESIS
Resumo:
The microinjection of carbachol into the medial preoptic area (MPO) of the rat induced natriuresis, kaliuresis and anti-diuresis in a dose-related manner. Atropine blocked all responses to carbachol. Hexamethonium impaired the dose-response effect of carbachol on kaliuresis, but had no effect on natriuresis and enhanced the antidiuretic effect of carbachol. Nicotine alone had no effects, but pre-treatment with nicotine enhanced the responses to carbachol. These data show that activity of the muscarinic receptors of the MPO increases renal electrolyte and reduces water excretion. They also suggest that nicotinic receptors have an inhibitory effect on water excretion. Nicotine could act through mechanisms unrelated to nicotinic receptors to enhance the effect of the carbachol. © 1989.
Resumo:
Uroguanylin, guanylin, and lymphoguanylin are small peptides that activate renal and intestinal receptor guanylate cyclases (GC). They are structurally similar to bacterial heat-stable enterotoxins (ST) that cause secretory diarrhea. Uroguanylin, guanylin, and ST elicit natriuresis, kaliuresis, and diuresis by direct actions on kidney GC receptors. A 3,762-bp cDNA characterizing a uroguanylin/guanylin/ST receptor was isolated from opossum kidney (OK) cell RNA/cDNA. This kidney cDNA (OK-GC) encodes a mature protein containing 1,049 residues sharing 72.4�75.8% identity with rat, human, and porcine forms of intestinal GC-C receptors. COS or HEK-293 cells expressing OK-GC receptor protein were activated by uroguanylin, guanylin, or ST13 peptides. The 3.8-kb OK-GC mRNA transcript is most abundant in the kidney cortex and intestinal mucosa, with lower mRNA levels observed in urinary bladder, adrenal gland, and myocardium and with no detectable transcripts in skin or stomach mucosa. We propose that OK-GC receptor GC participates in a renal mechanism of action for uroguanylin and/or guanylin in the physiological regulation of urinary sodium, potassium, and water excretion. This renal tubular receptor GC may be a target for circulating uroguanylin in an endocrine link between the intestine and kidney and/or participate in an intrarenal paracrine mechanism for regulation of kidney function via the intracellular second messenger, cGMP.
Resumo:
Uroguanylin, guanylin, and lymphoguanylin are small peptides that activate renal and intestinal receptor guanylate cyclases (GC). They are structurally similar to bacterial heat-stable enterotoxins (ST) that cause secretory diarrhea. Uroguanylin, guanylin, and ST elicit natriuresis, kaliuresis, and diuresis by direct actions on kidney GC receptors. A 3,762-bp cDNA characterizing a uroguanylin/guanylin/ST receptor was isolated from opossum kidney (OK) cell RNA/cDNA. This kidney cDNA (OK-GC) encodes a mature protein containing 1,049 residues sharing 72.4-75.8% identity with rat, human, and porcine forms of intestinal GC-C receptors. COS or HEK-293 cells expressing OK-GC receptor protein were activated by uroguanylin, guanylin, or ST13 peptides. The 3.8-kb OK-GC mRNA transcript is most abundant in the kidney cortex and intestinal mucosa, with lower mRNA levels observed in urinary bladder, adrenal gland, and myocardium and with no detectable transcripts in skin or stomach mucosa. We propose that OK-GC receptor GC participates in a renal mechanism of action for uroguanylin and/or guanylin in the physiological regulation of urinary sodium, potassium, and water excretion. This renal tubular receptor GC may be a target for circulating uroguanylin in an endocrine link between the intestine and kidney and/or participate in an intrarenal paracrine mechanism for regulation of kidney function via the intracellular second messenger, cGMP.
Resumo:
réalisé avec la codirection de Marek Jankowski
Resumo:
The aim of the present study was to analyze the role of alpha(1),alpha(2)-adrenoceptors, and the effects of losartan and PD123319 (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) injected into the paraventricular nucleus (PVN) on the diuresis, natriuresis, and kaliuresis induced by administration of adrenaline into the medial septal area (MSA). Male Holtzman rats with a stainless steel cannula implanted into the MSA and bilaterally into the PVN were used. The administration of adrenaline into the MSA increased in a dose-dependent manner the urine, sodium, and potassium excretions. The previous administration of prazosin (an alpha(1)-adrenoceptor antagonist) injected into the PVN abolished the above effects of adrenaline, whereas yohimbine (an a-adrenoceptor antagonist) doesn't affect the diuresis, natriuresis, and kaliuresis induced by adrenaline. Pretreatment with losartan into the PVN decreased in a dose-dependent manner the urine, sodium, and potassium excretions induced by MSA administration of adrenaline (50 ng), while PVN PD123319 was without effect. These results indicate that urinary and electrolyte excretion effects induced by adrenaline into the MSA are mediated primarily by PVN AT, receptors. However, the doses of losartan were more effective when combined with the doses of PD123319 than given alone, suggesting that the urinary, natriuretic, and kaliuretic effects of MSA adrenaline may involve activation of multiple angiotensin II receptors subtypes into the PVN. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We determined the effects of two classical angiotensin II (ANG II) antagonists, [Sar(1), Ala(8)]-ANG II and [Sar(1), Thr(8)]-ANG II, and losartan (a nonpeptide and selective antagonist for the AT 1 angiotensin receptors) on diuresis, natriuresis, kaliuresis and arterial blood pressure induced by ANG II administration into the median preoptic nucleus (MnPO) of male Holtzman rats weighing 250-300 g. Urine was collected in rats submitted to a water load (5% body weight) by gastric gavage, followed by a second water load (5% body weight) 1 h later. The volume of the drug solutions injected was 0.5 mu l over 10-15 s. Pre-treatment with [Sar(1), Ala(8)]-ANG II (12 rats) and [Sar(1), Thr(8)]-ANG II (9 rats), at the dose of 60 ng reduced (13.7 +/- 1.0 vs 11.0 +/- 1.0 and 10.7 +/- 1.2, respectively), whereas losartan (14 rats) at the dose of 160 ng totally blocked (13.7 +/- 1.0 vs 7.6 +/- 1.5) the urine excretion induced by injection of 12 ng of ANG II (14 rats). [Sar(1), Ala(8)]-ANG II impaired Na+ excretion (193 +/- 16 vs 120 +/- 19): whereas [Sar(1), Thr(8)]-ANG II and losartan blocked Na+ excretion (193 +/- 16 vs 77 +/- 15 and 100 +/- 12, respectively) induced by ANG II. Similar effects induced by ANG II on K+ excretion were observed with [Sar(1), Ala(8)]-ANG II, [Sar(1), Thr(8)]-ANG II, and losartan pretreatment (133 +/- 18 vs 108 +/- 11, 80 +/- 12, and 82 +/- 15, respectively). The same doses as above of [Sar(1), Ala(8)]-ANG II (8 rats), [Sar(1), Thr(8)]-ANG II (8 rats). and losartan (9 rats) blocked the increase in the arterial blood pressure induced by 12 ng of ANG II (12 rats) (32 +/- 4 ru 4 +/- 2, 3.5 +/- 1, and 2 +/- 1: respectively. The results indicate that the AT1 receptor subtype participates in the increases of diuresis, natriuresis. kaliuresis and arterial blood pressure induced by the administration of ANG II into the MnPO.
Resumo:
This study was performed to investigate the effect of lesion of the anteroventral third ventricle (AV3V) region on the pressor, bradycardic, dipsogenic, natriuretic, kaliuretic, and antidiuretic responses induced by cholinergic activation of the subfornical organ (SFO) in rats. Male Holtzman rats with sham or electrolytic AV3V lesion were implanted with a stainless steel cannula directly into the SFO. Microinjection of the cholinergic agonist carbachol (2 nmol) into the SFO of sham rats induced natriuresis (563 +/- 70 mueq/120 min), kaliuresis (205 +/- 13 mueq/120 min), antidiuresis (10.4 +/- 0.5 ml/120 min), water intake (9.3 +/-1.4 ml/h), bradycardia (-42 +/- 11 beats/min), and increased mean arterial pressure (53 +/- 3 mmHg). In AV3V-lesioned rats (1-5 and 14-18 days), there was a reduction of natriuresis (23 +/-11 and 105 +/- 26 mueq/120 min, respectively), kaliuresis (92 +/- 16 and 100 +/- 17 mueq/120 min), water intake (2.5 +/- 0.9 and 1.8 +/- 1.0 ml/h), and arterial pressure increase (17 +/- 2 and 16 +/- 2 mmHg) induced by carbachol into the SFO. Increased antidiuresis (6.0 +/- 1.0 and 5.2 +/- 0.7 ml/120 min, respectively) and tachycardia (39 +/- 4 and 15 +/- 12 beats/min) instead of bradycardia were also observed in both groups of AV3V-lesioned rats. These results show that cholinergic activation of the rat SFO produces marked natriuresis and kaliuresis in addition to the well-known pressor and dipsogenic responses. They also show that the AV3V region plays an important role in the cardiovascular, fluid, and electrolytic changes induced by cholinergic activation of the SFO in rats.
Resumo:
We determined the effect of intracerebroventricular (icv) administration of losartan, an angiotensin II (ANG II) subtype 1 receptor (AT1) antagonist, on icv carbachol-induced natriuresis, kaliuresis and antidiuresis in water-loaded male Holtzman rats (250-300 g) with a cannula implanted into the lateral ventricle (LV). The rats were water loaded with 5% of their body weight by gavage twice, with the second gavage one hour after the first. Carbachol (2 nmol in 1 mu l) was injected icv immediately after the second load. When losartan (DUP-753, 50 nmol in 1 mu l) was administered icv, it was given 3 min before carbachol. Previous icv treatment with losartan significantly reduced the icv carbachol-induced natriuresis (324 +/- 17 mu Eq/120 min), kaliuresis (103 +/- 15 mu Eq/120 min) and antidiuresis (13.5 +/- 2.1 ml/120 min) compared to the effects of previous icv injection of saline (Nai excretion = 498 +/- 22 mu Eq/120 min; K+ excretion = 167 +/- 20 mu Eq/120 min; urine volume = 5.2 +/- 1.2 ml/120 min). These results, reported as means +/- SEM for 12 rats in each group, are consistent with the hypothesis that AT1 subtype receptors participate in the regulation of body electrolyte balance.
Resumo:
In this study we investigated the influence of electrolytic lesion or of opioid agonist injections into the lateral hypothalamus (LH) on the dipsogenic, natriuretic, kaliuretic, antidiuretic, presser, and bradycardic effects of cholinergic stimulation of the medial septal area (MSA) in rats. Sham- and LH-lesioned male Holtzman rats received a stainless steel cannula implanted into the LH. Other groups of rats had cannulas implanted simultaneously into the MSA and LH. Carbachol (2 nmol) injection into the MSA induced water intake, presser, and bradycardic responses. LH lesion reduced all of these effects (1-3 and 15-18 days). Previous injection of synthetic opiate agonist, FK-33824 (100 ng), into the LH reduced the water intake, natriuresis, kaliuresis, and presser responses induced by carbachol injected into the MSA. These data show that both electrolytic lesion or injection of an opiate agonist in the LH reduces the fluid-electrolyte and cardiovascular responses to cholinergic activation of the MSA. The involvement of LH with central excitatory and inhibitory mechanisms related to fluid-electrolytic and cardiovascular control is suggested.
Resumo:
Isotonic NaCl is ingested in addition to water by cell-dehydrated rats in two-bottle tests. The objective of the present work was to find out whether mineral intake in the cell-dehydrated rat is specific to NaCl in a five-bottle test. Adult male Sprague Dawley rats had distilled water and four mineral solutions at palatable concentrations (0.01 M KCl, 0.05 mM CaCl2, 0.15 M NaHCO3, 0.15 M NaCl) simultaneously available for consumption. Cell-debydration was produced infusing 1.5 ml of NaCl solution (0.15, 0.25, 0.5, 1.01, 2.0, 4.0 M) intravenously for 10 min and intakes were recorded for the next hour. It was observed a NaCl concentration-dependent increase in 0.01 M KCl intake. The ingestion of the other mineral solutions was not significantly altered compared to infusion of 0.15 M NaCl. The ingestion of KCl was not related to changes in serum potassium concentration. The ingestion of KCl was reduced in half and water was the preferred fluid when the five-bottle test was performed with mineral solutions at isomolar (0.15 M) concentrations. There was no increase in intake of other mineral solution in the isomolar test. No preference was observed for palatable or isomolar solutions during early extracellular dehydration until 4 h after subcutaneous injection of furosemide, in spite of the increase in total volume intake. Therefore, mineral intake induced by cell dehydration is not specific for NaCl solution. The type of mineral solution available influences the choice and KCl. is the preferred solution of the cell-dehydrated rat in the conditions of the present study. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this study, we investigated the participation of adrenergic neurotransmission in angiotensin II- (ANGII)-induced water intake and urinary electrolyte excretion by means of injection of the alpha(1)-, alpha(2)-, and beta-adrenoceptor antagonists and ANGII into the medial preoptic area (MPOA) in rats. Prazosin (an alpha(1)-adrenergic antagonist) antagonized the water ingestion, Na+, K+ and urine excretion induced by ANGII, whereas yohimbine (an alpha(2)-adrenergic antagonist) enhanced the Na+, K+ and urine excretion induced by ANGII. Propranolol (a nonselective beta-adrenoceptor blocker) antagonized the water ingestion and enhanced the Na+ and urine excretion induced by ANGII. Previous treatment with prazosin reduced the presser responses to ANGII, whereas yohimbine had opposite effects. Previous injection of propranolol produced no effects in the presser responses to ANGII. These results suggest that the adrenergic neurotransmission in the MPOA may actively participate in ANGII-induced dipsogenesis, natriuresis, kaliuresis and diuresis in a process that involves alpha(1)-, alpha(2)-, and beta-adrenoceptors.