941 resultados para Joule Heating
Resumo:
Negative differential resistance (NDR) in current-voltage (I-V) characteristics and apparent colossal electroresistance were observed in Gd0.5Sr0.5MnO3 single crystals at low temperatures. The continuous dc I-V measurements showed a marked thermal drift. In addition, temperature of the sample surface was found to be significantly higher than that of the base at high applied currents. Two different strategies namely estimation and diminution of the Joule heating (pulsed I-V measurements) were employed to investigate its role in the electric transport properties. Our experiments reveal that the NDR in Gd0.5Sr0.5MnO3 is a consequence of Joule heating rather than the melting of charge order. (C) 2010 American Institute of Physics. doi:10.1063/1.3486221]
Resumo:
In this paper, we address a closed-form analytical solution of the Joule-heating equation for metallic single-walled carbon nanotubes (SWCNTs). Temperature-dependent thermal conductivity kappa has been considered on the basis of second-order three-phonon Umklapp, mass difference, and boundary scattering phenomena. It is found that kappa, in case of pure SWCNT, leads to a low rising in the temperature profile along the via length. However, in an impure SWCNT, kappa reduces due to the presence of mass difference scattering, which significantly elevates the temperature. With an increase in impurity, there is a significant shift of the hot spot location toward the higher temperature end point contact. Our analytical model, as presented in this study, agrees well with the numerical solution and can be treated as a method for obtaining an accurate analysis of the temperature profile along the CNT-based interconnects.
Resumo:
We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO(3) thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO(3) film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures. This approach can be further extended to unambiguous mapping of electrostatic signal contributions to PFM and related techniques.
Resumo:
We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvénic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvénic sectors, while no bow shock forms in the sub-Alfvénic sectors. The planets reside most of the time in the sub-Alfvénic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.
Resumo:
The temperature in a ferromagnetic nanostripe with a notch subject to Joule heating has been studied in detail. We first performed an experimental real-time calibration of the temperature versus time as a 100 ns current pulse was injected into a Permalloy nanostripe. This calibration was repeated for different pulse amplitudes and stripe dimensions and the set of experimental curves were fitted with a computer simulation using the Fourier thermal conduction equation. The best fit of these experimental curves was obtained by including the temperature-dependent behavior of the electrical resistivity of the Permalloy and of the thermal conductivity of thesubstrate(SiO2). Notably, a nonzero interface thermal resistance between the metallic nanostripe and thesubstrate was also necessary to fit the experimental curves. We found this parameter pivotal to understand ourresults and the results from previous works. The higher current density in the notch, together with the interface thermal resistance, allows a considerable increase of the temperature in the notch, creating a large horizontal thermal gradient. This gradient, together with the high temperature in the notch and the larger current density close to the edges of the notch, can be very influential in experiments studying the current assisted domain wall motion.
Resumo:
We address a physics-based solution of joule heating phenomenon in a single-layer graphene (SLG) sheet under the presence of Thomson effect. We demonstrate that the temperature in an isotopically pure (containing only C-12) SLG sheet attains its saturation level quicker than when doped with its isotopes (C-13). From the solution of the joule heating equation, we find that the thermal time constant of the SLG sheet is in the order of tenths of a nanosecond for SLG dimensions of a few micrometers. These results have been formulated using the electron interactions with the inplane and flexural phonons to demonstrate a field-dependent Landauer transmission coefficient. We further develop an analytical model of the SLG specific heat using the quadratic (out of plane) phonon band structure over the room temperature. Additionally, we show that a cooling effect in the SLG sheet can be substantially enhanced with the addition of C-13. The methodologies as discussed in this paper can be put forward to analyze the graphene heat spreader theory.
Resumo:
The electrical switching behavior of amorphous Al23Te77 thin film devices, deposited by flash evaporation, has been studied in co-planar geometry. It is found that these samples exhibit memory type electrical switching. Scanning Electron Microscopic studies show the formation of a crystalline filament in the electrode region which is responsible for switching of the device from high resistance OFF state to low resistance ON state. It is also found that the switching behavior of thin film Al-Te samples is similar to that of bulk samples, with the threshold fields of bulk samples being higher. This has been understood on the basis of higher thermal conductance in bulk, which reduces the Joule heating and temperature rise in the electrode region. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Highly stable varistor (voltage-limiting) property is observed for ceramics based on donor doped (Ba1-xSrx)Ti1-yZryO3 (x < 0.35, y < 0.05), when the ambient temperature (T(a)) is above the Curie point (T(c)). If T(a) < T(c), the same ceramics showed stable current-limiting behavior. The leakage current and the breakdown voltage as well as the nonlinearity coefficient (alpha = 30-50) could be varied with the T(c)-shifting components, the grain boundary layer modifiers and the post-sintering annealing. Analyses of the current-voltage relations show that grain boundary layer conduction at T(a) < T(c) corresponds to tunneling across asymmetric barriers formed under steady-state joule heating. At T(a) > T(c), trap-related conduction gives way to tunneling across symmetric barriers as the field strength increases.
Resumo:
High nonlinearity coefficients of 60–150 are observed in the current‐voltage (I‐V) curves of the mixed phase ceramics formed by cosintering ZnO with spinel phases having large negative temperature coefficients (NTCs) in resistivity. The region of negative slope in the I‐V curves of the NTC ceramics is progressively made positive with ZnO phase content, wherein ZnO grains function as a built‐in resistor in series to the resistance of the NTC phase. High α depends on the optimum phase content of ZnO as much as its intrinsic conductivity. The studies indicate that the predominent contribution to power dissipation is by way of joule heating from the resistive component of the current.
Resumo:
Non-linear resistors having current-limiting capabilities at lower field strengths, and voltage-limiting characteristics (varistors) at higher field strengths, were prepared from sintered polycrystalline ceramics of (Ba0.6Sr0.4)(Ti0.97Zr0.03)O3+0.3 at % La, and reannealed after painting with low-melting mixtures of Bi2O3 + PbO +B2O3. These types of non-linear characteristics were found to depend upon the non-uniform diffusion of lead and the consequent distribution of Curie points (T c) in these perovskites, resulting in diffuse phase transitions. Tunnelling of electrons across the asymmetric barrier at tetragonak-cubic interfaces changes to tunnelling across the symmetric barrier as the cubic phase is fully stabilized through Joule heating at high field strengths. Therefore the current-limiting characteristics switch over to voltage-limiting behaviour because tunnelling to acceptor-type mid-bandgap states gives way to band-to-band tunnelling.
Resumo:
Stable and highly reproducible voltage-limiting characteristics have been observed at room temperature for polycrystalline ceramics prepared from donor-doped BaTiO3 solid solutions containing isovalent lattice substitute ions that lower the Curie point Tc. When the ambient temperature Ta is decreased such that Ta < Tc, the same ceramics show current-limiting behaviour. The leakage current, the breakdown voltage and the non-linear coefficient (α = 30−50) could be varied with grain-boundary layer (GBL) modifiers and postsintering annealing. The magnitude of the abnormally high dielectric constant (epsilon (Porson)r greater than, approximately 105) indicates the prevalence of GBL capacitance in these ceramics. Analyses of the current-voltage relations show that GBL conduction at Ta < Tc corresponds to tunnelling across asymmetric barriers formed under steady state Joule heating. At Ta > Tc, trap-related conduction gives way to tunnelling across symmetric barriers as the field strength increases.
Resumo:
Analytical and numerical solutions have been obtained for some moving boundary problems associated with Joule heating and distributed absorption of oxygen in tissues. Several questions have been examined which are concerned with the solutions of classical formulation of sharp melting front model and the classical enthalpy formulation in which solid, liquid and mushy regions are present. Thermal properties and heat sources in the solid and liquid regions have been taken as unequal. The short-time analytical solutions presented here provide useful information. An effective numerical scheme has been proposed which is accurate and simple.
Resumo:
We have investigated the current-voltage characteristics of carbon nanotube arrays and shown that the current through the arrays increases rapidly with applied voltage before the breakdown occurs. Simultaneous measurements of current and temperature at one end of the arrays suggest that the rapid increase of current is due to Joule heating. The current through the array and the threshold voltage are found to increase with decreasing pressure. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3702777]
Resumo:
We report the geometrical effect of graded buckled multiwalled carbon nanotube arrays on the electrical transport properties in the diffusive regime, via successive breakdown caused by the Joule heating. This breakdown occurs in the straighter region. Empirical relations involving the current-carrying ability, resistance, breakdown power, threshold voltage, diameter and length of carbon nanotube arrays are discussed on the basis of an extensive set of experimental data along with justification. The experimental results are corroborated by the density functional tight-binding calculations of electronic band structure. The band gap decreases as buckleness increases leading to the enhancement in the current-carrying ability and elucidating the role of buckleness in carbon nanotubes. Copyright (c) EPLA, 2012