983 resultados para Joints (anatomy)
Resumo:
This is the first study performed with an interocclusal splint with a vibrating device on patients with sleep bruxism. The purpose of the present study was to evaluate the effectiveness of the splint with vibrating device on patients who suffer from sleep bruxism through computerized electromyography (EMG) of the anterior temporal muscles. Eight male and female patients, ranging in age from 18 to 28 years, with evident signs and symptoms of bruxism were selected. The splint were made for the upper arch. The patients was treated with the interocclusal splint with a vibrating device, and submitted to EMG evaluations of the anterior temporal muscles on both sides. The evaluations were performed at the beginning of treatment and after 21 days of splint use. Electromyography was performed in an isometric contractions measuring of the temporal muscles. The following results obtained revealed that: when closing the mandible (isometric contraction), the anterior temporal muscles had an expressive reduction in electromyographic activity (p. < 0.10), so this splints were considered effective for patients who suffer from sleep bruxism. © 2009 Springer-Verlag.
Resumo:
Feedback control systems have been used to move the muscles and joints of the limbs of paraplegic patients. The feedback signal, related to the knee joint angle, can be obtained by using an electrogoniometer. However, the use of accelerometers can help the measurements due the facility of adhering these devices to the skin. Accelerometers are also very suitable for these applications due their small dimensions and weight. In this paper a new method for designing a control system that can vary the knee joint angle using Functional Electrical Stimulation (FES) is presented, as well as a simulation with parameters values available in the literature. The nonlinear control system was represented by a Takagi-Sugeno fuzzy model and the feedback signals were obtained by using accelerometers. The design method considered all plant nonlinearities and was efficient and reliable to control the leg position of a paraplegic patient with the angle of the knee ranging from 0° to 30°, considering electric stimulation at the quadriceps muscle. The proposed method is viable and offers a new alternative for designing control systems of the knee joint angle using more comfortable sensors for the patients.
Resumo:
National Highway Safety Bureau, Washington, D.C.
Resumo:
Background: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only.Methods: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made.Results: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures.Conclusions: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. © 2010 Richter et al; licensee BioMed Central Ltd.
Resumo:
PURPOSE: The purpose of this work was to demonstrate the normal ligamentous and tendinous anatomy of the intermetacarpal (IMC) and common carpometacarpal (CCMC) joints with MRI and MR arthrography. METHOD: MR images of 22 wrists derived from fresh human cadavers were obtained before and after arthrography. The MR imaging features of the ligaments and tendons about the CCMC and IMC joints and the joints themselves were analyzed in a randomized fashion and correlated with those seen on anatomic sections. RESULTS: Six CCMC ligaments were visualized. The dorsal and palmar CCMC ligaments and the pisometacarpal ligament were best visualized in the sagittal plane. The radial and ulnar CCMC collateral ligaments and the capito-third metacarpal ligament were best visualized in the coronal plane. Three main IMC ligaments were observed: a dorsal and a palmar ligament and an interosseous ligament complex. All three ligaments were best visualized in the axial plane. Four tendinous insertions to the metacarpal bases were evident. CONCLUSION: The anatomy of the ligaments and tendinous insertions about the second to fifth IMC and the CCMC joints is well demonstrated by MR imaging and MR arthrography. MR arthrography does not significantly improve the visualization of these complex structures.
Resumo:
Nerve blocks and radiofrequency neurotomy of the nerves supplying the cervical zygapophyseal joints are validated tools for diagnosis and treatment of chronic neck pain, respectively. Unlike fluoroscopy, ultrasound may allow visualization of the target nerves, thereby potentially improving diagnostic accuracy and therapeutic efficacy of the procedures. The aims of this exploratory study were to determine the ultrasound visibility of the target nerves in chronic neck pain patients and to describe the variability of their course in relation to the fluoroscopically used bony landmarks.
Resumo:
Earlier eds. have title: The anatomy of the human body.
Resumo:
v. 1. The anatomy of the bones, muscles, and joints -- v. 2. The anatomy of the heart and arteries -- v. 3. The nervous system / by Charles Bell -- v. 4. The anatomy of the viscera of the abdomen, the parts in the male and female pelvis, and the lymphatic system / by Charles Bell.
Resumo:
v. 1. Bones. Muscles. Joints -- v. 2. Viscera. Senses -- v. 3. Blood-vessels. Absorbents. Nerves. Glands. Dissecting the different parts of the human body. Glossary. Index -- v. 4. Comparative anatomy. -- v. [5] Plates.
Resumo:
v. 1. Bones, muscles and joints. 4th ed. 1808 -- v. 2. Heart and arteries. 3rd ed. corr. 1808 -- v. 3. Nervous system, with plates / by Charles Bell. 1803 -- v. 4. Viscera of the abdomen, the parts in the male and female pelvis, and the lymphatic system / by Charles Bell. 1804.
Resumo:
In specialized literature, reports on anatomy of miners in host plants are few in number. These agents trigger excavations, or paths, by consumption of plant inner tissues by larvae of several insects. The aim of this work was to investigate leaf miner occurrence in Commelina diffusa (a cosmopolitan plant) and Floscopa glabrata (an amphibious plant) using anatomical techniques. The place where the plants were collected is subjected to seasonal floods, consequently both the species were exposed to the same weather conditions and seasonal floods. This study showed that members of Agromyzidae and Chironomidae families, which are Diptera endophytophagous larvae types, were responsible for the tunnels. Moreover, in Commelina diffusa Agromyzidae larvae were found, while in Floscopa glabrata three Chironomidae cephalic exuviae were found. The miners, as can be seen from anatomical studies, used only mesophyll parenchyma tissues for feeding, causing the formation of linear mines. In addition, in both the species, the epidermis and the medium-sized vascular units were kept intact, showing no structural modification, such as neoformation of tissues.
Resumo:
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H alpha, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman & O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10(-4) M(circle dot) is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.
Resumo:
The study and understanding of alterations taking place during the micropropagation process can provide valuable information about this technology. The objective of this work was to evaluate the anatomical modifications in leaves of micropropagated banana (Musa spp.) plants during their adaptation to ex vitro conditions. Aseptic axillary shoots of `Preciosa` cultivar (AAAB) were rooted for 24 days in MS medium containing NAA (1mg.l(-1)) and agar (6g.l(-1)), and acclimatized for 120 days. The treatments consisted of leaves at different stages of development: T1 - leaves from plants at the end of in vitro rooting phase, T2 persistent leaves from plants after 30 days of acclimatization, T3 - new leaves from plants after 30 days of acclimatization (transition leaves). T4 - transition leaves from plants after 60 days, T5 - new leaves from plants after 60 days of acclimatization, and T6 - new leaves from plants after 120 days of acclimatization. A higher degree of differentiation and, thereby, better adaptation took place in leaves from leaf primordial differentiated in ex vitro conditions. The acclimatization phase is crucial for a greater thickness and differentiation of spongy and palisade parenchyma, and to correct the modifications of plants developed in vitro. The study of leaf anatomy provides a better understanding of alterations occurring in micropropagated banana plants.
Resumo:
Background and Study Aim: This study evaluated the influence of competitive practice and training aspects on incidence of injuries to the lower limbs joints in formalized (taolu) and combat (sanshou) kung fu athletes. Material/Methods: One hundred and twenty-seven kung fu athletes (taolu, n=82; sanshou, n=45) were interviewed about kung fu practice (practice time, competition time and competition level), training volume (days of training per week and hours per training session) and injury profiles (incidence and type). Continuous variables were compared by non-parametric Kolmogorov-Smirnov test (disciplines and competition levels as grouping variables). The effects of categorical variables (kung fu practice) on injury profiles were analyzed using the Pearson`s chi-square test. The level of significance was set at p<0.05. Results: Our data exhibited large frequency of injury reports (70.1%) and significantly differences on injury profiles between disciplines and competition levels. Taolu athletes, despite the lower practice/competition time (-51.5 and -41.8%, respectively), presented frequency of injury reports twofold greater, longer daily training volume (23.3%) and higher incidence of lower limbs joints injuries than sanshou athletes (35.4% and 11.8%, respectively). Conclusions: Our results suggest a link between injury profiles (incidence and type) and specific characteristics of kung fu disciplines.