1000 resultados para Jet Expansion Feedback
Resumo:
The hydrodynamic structure of an axisymmetric supersonic expansion can be regarded as a series of concentric divergent cones, with decreasing particle densities as the cone angle increases. Different groups of molecules therefore contribute to high-resolution absorption line shapes when optically probing the expansion in a direction perpendicular to the jet axis. These groups are distinguished by the cone angle, inducing a specific Doppler shift, and by the particle density, contributing a specific weight to the absorption intensity. As a result different broader line profiles are observed compared to room temperature spectra. This effect is investigated here selecting as the working example the R(0), ν3 absorption line in N2O recorded using a Fourier transform interferometer. Independent impact pressure and quadrupole mass spectrometric measurements are performed leading to two complementary maps of the expansion, allowing the recorded absorption line shape to be quantitatively modeled. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes an experimental study on the oscillation flow characteristics of submerged supersonic gas jets issued from Laval nozzles. The flow pattern during the jet development and the jet expansion feedback phenomenon are studied using a high-speed camera and a pressure measurement system. The experimental results indicate that along the downstream distance, the jet has three flow regimes: (1) momentum jet; (2) buoyant jet; (3) plume. In the region near the nozzle exit a so-called bulge phenomenon is found. Bulging of the jet occurs many times before the more violent jet expansion feedback occurs. During the feedback process, the jet diameter can become several times that of the original one depending on the jet Mach number. The frequencies of the jet bulging and the jet expansion feedback are measured.
Resumo:
Aggregation in hydroxyacetone (HA) is studied using low-temperature FTIR, supersonic jet expansion, and X-ray crystallographic (in situ cryocrystallization) techniques. Along with quantum chemical methods (MP2 and DFT), the experiments unravel the conformational preferences of HA upon aggregation to dinners and oligomers. The O-H center dot center dot center dot O=C intramolecular hydrogen bond present in the gas-phase monomer partially opens upon aggregation in supersonic expansions, giving rise to intermolecular cooperatively enhanced O-H center dot center dot center dot O-H hydrogen bonds in competition with isolated O-H center dot center dot center dot O=C hydrogen bonds. On the other hand, low-temperature IR studies on the neat solid and X-ray crystallographic data reveal that HA undergoes profound conformational changes upon crystallization, with the HOCC dihedral angle changing from similar to 0 degrees in the gas phase to similar to 180 degrees in the crystalline phase, hence giving rise to a completely new conformation. These conclusions are supported by theoretical calculations performed on the geometry derived from the crystalline phase.
Resumo:
A set-up combining a high resolution Fourier transform interferometer and a quadrupole mass spectrometer with a supersonic jet expansion produced thanks to a large turbomolecular pumping unit is described. A rotational temperature close to 3 K is demonstrated. Vibration-vibration energy transfer in the expansion affecting the v2 = 1 state in N2O is monitored in the presence of various collision partners. The transfer from the v 2 = 1 state of N2O towards the quasi resonant, lower energy v2 = 1 state of OCS is demonstrated, in particular. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We combine the technique of femtosecond degenerate four-wave mixing (fs-DFWM) with a high repetition-rate pulsed supersonic jet source to obtain the rotational coherence spectrum (RCS) of cold cyclohexane (C(6)H(12)) with high signal/noise ratio. In the jet expansion, the near-parallel flow pattern combined with rapid translational cooling effectively eliminate dephasing collisions, giving near-constant RCS signal intensities over time delays up to 5 ns. The vibrational cooling in the jet eliminates the thermally populated vibrations that complicate the RCS coherences of cyclohexane at room temperature [Bragger, G.; et al. J. Phys. Chem. A 2011, 115, 9567]. The rotational cooling reduces the high-J rotational-state population, yielding the most accurate ground-state rotational constant to date, B(0) = 4305.859(9) MHz. Based on this B(0), a reanalysis of previous room-temperature gas-cell RCS measurements of cydohexane gives improved vibration rotation interaction constants for the v(32), v(6), v(16), and v(24) vibrational states. Combining the experimental B(0)(C(6)H(12)) with CCSD(T) calculations yields a very accurate semiexperimental equilibrium structure of the chair isomer of cyclohexane
Resumo:
The direct infrared (IR) absorption spectrum of benzene dimer formed in a free-jet expansion was recorded in the 3.3 mu m region for the first time. This has led to the observation of the C H stretching fundamental mode nu(13) (B(1u)), which is both IR and Raman forbidden in the monomer. Moreover, the IR forbidden and Raman allowed nu(7) (E(2g)) mode has been observed as well. These two modes were found to be red-shifted along with the IR allowed nu(20) (E(1u)) mode, as previously reported by Erlekam et al. [Erlekam; Frankowski; Meijer; Gert von Helden J. Chem. Phys. 2006, 124, 171101], using ion-dip spectroscopy, contrary to the blue-shift predicted earlier by theoretical studies. The observation of the nu(13) band indicates that the symmetry is reduced in the dimer, confirming the T-shaped structure observed by Erlekam et al. Our experimental results have not provided any direct evidence for the presence of the parallel displaced geometry, the main objective of the present work, as predicted by theoretical calculations.
Resumo:
Using high-resolution 3D and 2D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGNs) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity approximate to epsilon(M) over dot(acc)c(2); where (M) over dot(acc). is the mass accretion rate at 1 kpc) as small as 6 x 10(-5) is sufficient to reduce the cooling/accretion rate by similar to 10 compared to a pure cooling flow in clusters (with M-200 less than or similar to 7 x 10(14) M-circle dot). This value is much smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted onto the supermassive black hole (SMBH). The feedback efficiency in earlier works was so high that the cluster core reached equilibrium in a hot state without much precipitation, unlike what is observed in cool-core clusters. We find hysteresis cycles in all our simulations with cold mode feedback: condensation of cold gas when the ratio of the cooling-time to the free-fall time (t(cool)/t(ff)) is less than or similar to 10 leads to a sudden enhancement in the accretion rate; a large accretion rate causes strong jets and overheating of the hot intracluster medium such that t(cool)/t(ff) > 10; further condensation of cold gas is suppressed and the accretion rate falls, leading to slow cooling of the core and condensation of cold gas, restarting the cycle. Therefore, there is a spread in core properties, such as the jet power, accretion rate, for the same value of core entropy t(cool)/t(ff). A smaller number of cycles is observed for higher efficiencies and for lower mass halos because the core is overheated to a longer cooling time. The 3D simulations show the formation of a few-kpc scale, rotationally supported, massive (similar to 10(11) M-circle dot) cold gas torus. Since the torus gas is not accreted onto the SMBH, it is largely decoupled from the feedback cycle. The radially dominant cold gas (T < 5 x 10(4) K; vertical bar v(r)vertical bar >vertical bar v(phi vertical bar)) consists of fast cold gas uplifted by AGN jets and freely infalling cold gas condensing out of the core. The radially dominant cold gas extends out to 25 kpc for the fiducial run (halo mass 7 x 10(14) M-circle dot and feedback efficiency 6 x 10(-5)), with the average mass inflow rate dominating the outflow rate by a factor of approximate to 2. We compare our simulation results with recent observations.
Resumo:
At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.
Resumo:
In the context of government funding and targets for increased participation in higher education and equity groups, as well as attrition rates, the literature on first year higher education highlights the importance of appropriate levels of support for students transitioning to higher education. In the law school context, support of first year students is also important in the response to the high levels of stress among law students. It is therefore necessary for universities to provide a variety of support to first year students from both a student perspective and a curriculum perspective. This paper explores the process of investigating the expansion of student support, including peer support programs, staff led programs, appointing a first year coordinator and developing a curriculum plan. These programs promote engagement and ensure a cohesive and integrated first year experience from both curriculum design and student experience perspectives. This paper will explain the process undertaken at QUT of expanding support for first year law students, overview the program details and will reflect on the feedback from students, peer facilitators and staff of expanding support for first year law students at QUT. The paper will conclude with recommendations for improvement to the program.
Resumo:
A long query provides more useful hints for searching relevant documents, but it is likely to introduce noise which affects retrieval performance. In order to smooth such adverse effect, it is important to reduce noisy terms, introduce and boost additional relevant terms. This paper presents a comprehensive framework, called Aspect Hidden Markov Model (AHMM), which integrates query reduction and expansion, for retrieval with long queries. It optimizes the probability distribution of query terms by utilizing intra-query term dependencies as well as the relationships between query terms and words observed in relevance feedback documents. Empirical evaluation on three large-scale TREC collections demonstrates that our approach, which is automatic, achieves salient improvements over various strong baselines, and also reaches a comparable performance to a state of the art method based on user’s interactive query term reduction and expansion.
Resumo:
The effects of various discharge parameters and ambient gas on the length of He atmospheric plasma jet plumes expanding into the open air are studied. It is found that the voltage and width of the discharge-sustaining pulses exert significantly stronger effects on the plume length than the pulse frequency, gas flow rate, and nozzle diameter. This result is explained through detailed analysis of the I-V characteristics of the primary and secondary discharges which reveals the major role of the integrated total charges of the primary discharge in the plasma dynamics. The length of the jet plume can be significantly increased by guiding the propagating plume into a glass tube attached to the nozzle. This increase is attributed to elimination of the diffusion of surrounding air into the plasma plume, an absence which facilitates the propagation of the ionization front. These results are important for establishing a good level of understanding of the expansion dynamics and for enabling a high degree of control of atmospheric pressure plasmas in biomedical, materials synthesis and processing, environmental and other existing and emerging industrial applications. © 2009 American Institute of Physics.
Resumo:
In a pilot application based on web search engine calledWeb-based Relation Completion (WebRC), we propose to join two columns of entities linked by a predefined relation by mining knowledge from the web through a web search engine. To achieve this, a novel retrieval task Relation Query Expansion (RelQE) is modelled: given an entity (query), the task is to retrieve documents containing entities in predefined relation to the given one. Solving this problem entails expanding the query before submitting it to a web search engine to ensure that mostly documents containing the linked entity are returned in the top K search results. In this paper, we propose a novel Learning-based Relevance Feedback (LRF) approach to solve this retrieval task. Expansion terms are learned from training pairs of entities linked by the predefined relation and applied to new entity-queries to find entities linked by the same relation. After describing the approach, we present experimental results on real-world web data collections, which show that the LRF approach always improves the precision of top-ranked search results to up to 8.6 times the baseline. Using LRF, WebRC also shows performances way above the baseline.
Resumo:
Polynomial Chaos Expansion with Latin Hypercube sampling is used to study the effect of material uncertainty on vibration control of a smart composite plate with piezoelectric sensors/actuators. Composite material properties and piezoelectric coefficients are considered as independent and normally distributed random variables. Numerical results show substantial variation in structural dynamic response due to material uncertainty of active vibration control system. This change in response due to material uncertainty can be compensated by actively tuning the feedback control system. Numerical results also show variation in dispersion of dynamic characteristics and control parameters with respect to ply angle and stacking sequence.
Resumo:
The process of die swell in polymer jets is an important feature within polymer processing and can be explained through a study of its rheological effects. The existence of a thermocapillary effect, driven by the gradient of its surface tension, should be considered when examining a thermal jet that has a non-uniform temperature distribution on its free surface, as in various polymer processings. Both the rheological effect and thermocapillary effect on die swell can be studied numerically through a finite element method as used on a two-dimensional and unsteady model, in which a Coleman-Noll second-order fluid model is employed. The results show that the expanding angle depends on both the rheological property of the fluid and the pressure at the vessel exit. Although both the thermocapillary and the rheological effects contribute to the cross-section expansion of the fluid jet, the latter is more important in determining the expansion.
Resumo:
In this experimental and numerical study, two types of round jet are examined under acoustic forcing. The first is a non-reacting low density jet (density ratio 0.14). The second is a buoyant jet diffusion flame at a Reynolds number of 1100 (density ratio of unburnt fluids 0.5). Both jets have regions of strong absolute instability at their base and this causes them to exhibit strong self-excited bulging oscillations at welldefined natural frequencies. This study particularly focuses on the heat release of the jet diffusion flame, which oscillates at the same natural frequency as the bulging mode, due to the absolutely unstable shear layer just outside the flame. The jets are forced at several amplitudes around their natural frequencies. In the non-reacting jet, the frequency of the bulging oscillation locks into the forcing frequency relatively easily. In the jet diffusion flame, however, very large forcing amplitudes are required to make the heat release lock into the forcing frequency. Even at these high forcing amplitudes, the natural mode takes over again from the forced mode in the downstream region of the flow, where the perturbation is beginning to saturate non-linearly and where the heat release is high. This raises the possibility that, in a flame with large regions of absolute instability, the strong natural mode could saturate before the forced mode, weakening the coupling between heat release and incident pressure perturbations, hence weakening the feedback loop that causes combustion instability. © 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.