191 resultados para Jatropha weddelliana
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
3-Acetylaleuritolic acid, sitosterol and a novel lathyrane diterpene, jatrowedione, have been isolated from the roots of Jatropha weddelliana. The elucidation of the structure of the latter was accomplished by detailed NMR investigation, and the relative configuration was established by difference NOE experiments. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A trial was undertaken to evaluate the effect of microwaves on seed mortality of three weed species. Seeds of rubber vine (Cryptostegia grandiflora R.Br.), parthenium (Parthenium hysterophorous L.) and bellyache bush (Jatropha gossypiifolia L.) were buried at six depths (0, 2.5, 5, 10, 20 and 40 cm) in coarse sand maintained at one of two moisture levels, oven dry or wet (field capacity), and then subjected to one of five microwave radiation durations of (0, 2, 4, 8 and 16 min). Significant interactions between soil moisture level, microwave radiation duration, seed burial depth and species were detected for mortality of seeds of all three species. Maximum seed mortality of rubber vine (88%), parthenium (67%) and bellyache bush (94%) occurred in wet soil irradiated for 16 min. Maximum seed mortality of rubber vine and bellyache bush seeds occurred in seeds buried at 2.5 cm depth whereas that of parthenium occurred in seeds buried at 10 cm depth. Maximum soil temperatures of 114.1 and 87.5°C in dry and wet soil respectively occurred at 2.5 cm depth following 16 min irradiation. Irrespective of the greater soil temperatures recorded in dry soil, irradiating seeds in wet soil generally increased seed mortality 2.9-fold compared with dry soil. Moisture content of wet soil averaged 5.7% compared with 0.1% for dry soil. Results suggest that microwave radiation has the potential to kill seeds located in the soil seed bank. However, many factors, including weed species susceptibility, determine the effectiveness of microwave radiation on buried seeds. Microwave radiation may be an alternative to conventional methods at rapidly depleting soil seed banks in the field, particularly in relatively wet soils that contain long lived weed seeds.
Resumo:
The seed-feeding jewel bug, Agonosoma trilineatum (F.), is an introduced biological control agent for bellyache bush, Jatropha gossypiifolia L. To quantify the damage potential of this agent, shadehouse experiments were conducted with individual bellyache bush plants exposed to a range of jewel bug densities (0, 6 or 24 jewel bugs/plant). The level of abortion of both immature and mature seed capsules and impacts on seed weight and seed viability were recorded in an initial short-term study. The ability of the jewel bug to survive and cause sustained damage was then investigated by measuring seed production, the survival of adults and nymph density across three 6-month cycles. The level of seed capsule abortion caused by the jewel bug was significantly affected by the maturity status of capsules and the density of insects present. Immature capsules were most susceptible and capsule abortion increased with jewel bug density. Similarly, on average, the insects reduced the viability of bellyache bush seeds by 79% and 89% at low and high densities, respectively. However, sustaining jewel bug populations for prolonged periods proved difficult. Adult survival at the end of three 6-month cycles averaged 11% and associated reductions in viable seed production ranged between 55% and 77%. These results suggest that the jewel bug has the potential to reduce the number of viable seeds entering the soil seed bank provided populations can be established and maintained at sufficiently high densities.
Resumo:
Bellyache bush, Jatropha gossypiifolia L., is a serious weed of northern Australia. Agonosoma trilineatum (F.) is an insect from tropical America released in Australia in 2003 as a biological control agent against bellyache bush. It feeds on seeds and has the potential to reduce seed production, thereby potentially reducing the rate of spread and recruitment. To test the host specificity of A. trilineatum, four biological responses to host plant species were determined: development of nymphs, oviposition preferences, adult feeding and frequency of mating. Development of nymphs to adults and adult feeding only occurred on three Jatropha spp. These species also supported mating and oogenesis but only J. gossypiifolia was accepted for oviposition. Mating did not occur in the presence of other plant species. The evidence indicates that there is little risk associated with the release of this insect species in Australia and probably other countries where this weed is a problem. The probability of this insect expanding its host range is low because multiple aspects of the biology would need to change simultaneously. A. trilineatum was released in Australia between 2003 and 2007. A Climex model indicated that coastal areas of Queensland and the Northern Territory would be climatically most suitable for this insect.
Resumo:
Dhileepan, Raghu and colleagues recently published their paper 'Worldwide phylogeography of the globally invasive plant: Jatropha gossypiifolia' in Proceedings of the 16th Australian Weeds Conference. They used chloroplast microsatellites to establish patterns of phylogeographic structure in the native and introduced range of Jatropha gossypiifolia, and to determine the origin(s) of introductions and the level of genetic diversity present in native and introduced populations. J. gossypiifolia exhibited limited phylogeographic structure in its native range which was best explained by contemporary movement associated with the ornamental plant trade. Multiple introductions from diverse source locations and no reduction in genetic diversity was found in the introduced range which includes Australia, Africa and Asia. These results have implications for our current biocontrol project.
Resumo:
Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that has the potential to greatly reduce biodiversity and pasture productivity in northern Australia’s rangelands. This paper reports an approach to develop best practice options for controlling medium to dense infestations of bellyache bush using combinations of control methods. The efficacy of five single treatments including foliar spraying, slashing, stick raking, burning and do nothing (control) were compared against 15 combinations of these treatments over 4 successive years. Treatments were evaluated using several attributes, including plant mortality, changes in population demographics, seedling recruitment, pasture yield and cost of treatment. Foliar spraying once each year for 4 years proved the most cost-effective control strategy, with no bellyache bush plants recorded at the end of the study. Single applications of slashing, stick raking and to a lesser extent burning, when followed up with foliar spraying also led to significantly reduced densities of bellyache bush and changed the population from a growing one to a declining one. Total experimental cost estimates over 4 successive years for treatments where burning, stick raking, foliar spraying, and slashing were followed with foliar spraying were AU$408, AU$584, AU$802 and AU$789 ha–1, respectively. Maximum pasture yield of 5.4 t ha–1 occurred with repeated foliar spraying. This study recommends that treatment combinations using either foliar spraying alone or as a follow up with slashing, stick raking or burning are best practice options following consideration of the level of control, changes in pasture yield and cost effectiveness.
Resumo:
Bellyache bush (Jatropha gossypifolia L.) is an invasive shrub that adversely impacts agricultural and natural systems of northern Australia. While several techniques are available to control bellyache bush, depletion of soil seed banks is central to its management. A 10-year study determined the persistence of intact and ant-discarded bellyache bush seeds buried in shade cloth packets at six depths (ranging from 0 to 40 cm) under both natural rainfall and rainfall-excluded conditions. A second study monitored changes in seedling emergence over time, to provide an indication of the natural rate of seed bank depletion at two sites (rocky and heavy clay) following the physical removal of all bellyache bush plants. Persistence of seed in the burial trial varied depending on seed type, rainfall conditions and burial depth. No viable seeds of bellyache bush remained after 72 months irrespective of seed type under natural rainfall conditions. When rainfall was excluded seeds persisted for much longer, with a small portion (0.4%) of ant-discarded seeds still viable after 120 months. Seed persistence was prolonged (> 96 months to decline to < 1% viability) at all burial depths under rainfall-excluded conditions. In contrast, under natural rainfall, surface located seeds took twice as long (70 months) to decline to 1% viability compared with buried seeds (35 months). No seedling emergence was observed after 58 months and 36 months at the rocky and heavy clay soil sites, respectively. These results suggest that the required duration of control programs on bellyache bush may vary due to the effect of biotic and abiotic factors on persistence of soil seed banks.
Resumo:
Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that poses economic and environmental problems in northern Australia. Competition between pasture and bellyache bush was examined in North Queensland using combinations of five pasture treatments (uncut (control); cut as low, medium, and high pasture; and no pasture) and four bellyache bush densities (0, 2, 6 and 12plantsm(-2)) in a buffel grass (Cenchrus ciliaris L.) dominated pasture. The pasture treatments were applied approximately once per year but no treatments were applied directly to the bellyache bush plants. Measurements of bellyache bush flowering, seed formation, and mortality were undertaken over a 9-year period, along with monitoring the pasture basal cover and plant species diversity. Maximum flowering rates of bellyache bush occurred after 9 years (97%) in plots containing no pasture, with the lowest rates of 9% in uncut control plots. Earliest flowering (322 days after planting) and seed formation (411 days) also occurred in plots with no pasture compared with all other pasture treatments (range 1314-1393 days for seed formation to occur). No seeds were produced in uncut plots. At the end of 9 years, mortality rates of bellyache bush plants initially planted averaged 73% for treatments with some pasture compared with 55% under the no-pasture treatment. The percentage of herbaceous plant basal cover in uncut plots was increased 5-fold after 9 years, much greater than the average 2% increase recorded across the low, medium, and high pasture treatments. The number of herbaceous species in uncut plots remained largely unchanged, whereas there was an average reduction of 46% in the cut pasture treatments. Buffel grass remained the species with the greatest basal cover across all cut pasture treatments, followed by sabi grass (Urochloa mosambicensis (Hack.) Dandy) and then red Natal grass (Melinis repens (Willd.) Ziska). These results suggest that grazing strategies that maintain a healthy and competitive pasture layer may contribute to reducing the rate of spread of bellyache bush and complement traditional control techniques such as the use of herbicides.
Resumo:
Bellyache bush (Jatropha gossypifolia L. (Euphorbiaceae)) is a serious weed of dry tropical regions of northern Australia, with the potential to spread over much of the tropical savannah. It is well adapted to the harsh conditions of the dry tropics, defoliating during the dry season and rapidly producing new leaves with the onset of the wet season. In this study we examined the growth and biomass allocation of the three Queensland biotypes Queensland Green, Queensland Bronze and Queensland Purple) under three water regimes (water-stressed, weekly watering and constant water). Bellyache bush plants have a high capacity to adjust to water stress. The impact of water stress was consistent across the three biotypes. Water stressed plants produced significantly less biomass compared to plants with constant water, increased their biomass allocation to the roots and increased biomass allocation to leaf material. Queensland Purple plants allocated more resources to roots and less to shoots than Queensland Green (Queensland Bronze being intermediate). Queensland Green produced less root biomass than the other two biotypes.
Resumo:
Bellyache bush (Jatropha gossypiifolia, Euphorbiaceae), a deciduous shrub introduced as an ornamental from tropical America, is a major and expanding weed of rangelands and riparian zones in northern Australia. Biological control is the most economically viable and long-term management solution for this weed. Surveys for potential biological control agents for J gossypiifolia in Mexico,Central America and the Caribbean resulted in release of the seed-feeding jewel bug Agonosoma trilineatum (Hemiptera: Scutelleridae), which failed to establish, and prioritisation of a leaf-rust Phakopsora arthuriana (Puccineales: Phakopsoraceae) for host-specificity testing, which is ongoing. With poor prospects for new agents from Mexico and Central America and the Caribbean, the search for candidate agents on J gossypiifolia shifted to localities south of the equator. Surveys were conducted on the purple-leaf form of J gossypiifolia, Jatropha excisa, Jatropha clavuligera and Jatropha curcas in Peru, Bolivia and Paraguay in 2012 and 2013. A total of 11 insect species, one mite species and the leaf-rust (P. arthuriana) were observed. These include a yet to be described leafmining moth (Stomphastis sp.) (Lepidoptera: Gracillaridae), a shoot and leaf-galling midge Prodiplosis longifila, and leaf-feeding midge Prodiplosis sp. near longifila (both Diptera:Cecidomyiidae) and an unidentified leaf-feeding moth larva (Lepidoptera: Notodontidae). The leafminer is widespread and damaging and has a field host range restricted to the genus Jatropha in Peru and Bolivia, holds the greatest promise as a biological control agent in Australia. Phakopsora arthuriana was recorded for the first time ever from Bolivia and Peru. Further exploration will be conducted in Peru and Bolivia during the wet season to confirm the field host range of collected agents,and to look for more new agents. Promising agents with field host-range restricted to Jatropha spp. will be imported into a quarantine facility in Australia for host-specificity testing.
Resumo:
Together with 106 farmers who started growing Jatropha (Jatropha curcas L.) in 20042006, this research sought to increase the knowledge around the real-life experience of Jatropha farming in the southern India states of Tamil Nadu and Andhra Pradesh. Launched as an alternative for diesel in India, Jatropha has been promoted as a non-edible plant that could grow on poor soils, yield oil-rich seeds for production of bio-diesel, and not compete directly with food production. Through interviews with the farmers, information was gathered regarding their socio-economic situation, the implementation and performance of their Jatropha plantations, and their reasons for continuing or discontinuing Jatropha cultivation. Results reveal that 82% of the farmers had substituted former cropland for their Jatropha cultivation. By 2010, 85% (n = 90) of the farmers who cultivated Jatropha in 2004 had stopped. Cultivating the crop did not give the economic returns the farmers anticipated, mainly due to a lack of information about the crop and its maintenance during cultivation and due to water scarcity. A majority of the farmers irrigated and applied fertilizer, and even pesticides. Many problems experienced by the farmers were due to limited knowledge about cultivating Jatropha caused by poor planning and implementation of the national Jatropha program. Extension services, subsidies, and other support were not provided as promised. The farmers who continued cultivation had means of income other than Jatropha and held hopes of a future Jatropha market. The lack of market structures, such as purchase agreements and buyers, as well as a low retail price for the seeds, were frequently stated as barriers to Jatropha cultivation. For Jatropha biodiesel to perform well, efforts are needed to improve yield levels and stability through genetic improvements and drought tolerance, as well as agriculture extension services to support adoption of the crop. Government programs will -probably be more effective if implementing biodiesel production is conjoined with stimulating the demand for Jatropha biodiesel. To avoid food-biofuel competition, additional measures may be needed such as land-use restrictions for Jatropha producers and taxes on biofuels or biofuel feedstocks to improve the competitiveness of the food sector compared to the bioenergy sector. (c) 2012 Society of Chemical Industry and John Wiley & Sons, Ltd