994 resultados para Jato de plasma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research for better performance materials in biomedical applications are constants. Thus recent studies aimed at the development of new techniques for modification of surfaces. The low pressure plasma has been highlighted for its versatility and for being environmentally friendly, achieving good results in the modification of physic chemical properties of materials. However, it is requires an expensive vacuum system and cannot able to generate superficial changes in specific regions. Furthermore, it is limits their use in polymeric materials and sensitive terms due to high process temperatures. Therefore, new techniques capable of generating cold plasma at atmospheric pressure (APPJ) were created. In order to perform surface treatments on biomaterials in specific regions was built a prototype capable of generating a cold plasma jet. The prototype plasma generator consists of a high voltage source, a support arm, sample port and a nozzle through which the ionized argon. The device was formed to a dielectric tube and two electrodes. This work was varied some parameters such as position between electrodes, voltage and electrical frequency to verify the behavior of glow discharges. The disc of titanium was polished and there was a surface modification. The power consumed, length, intensity and surface modifications of titanium were analyzed. The energy consumed during the discharges was observed by the Lissajous figure method. To check the length of the jets was realized with Image Pro Plus software. The modifications of the titanium surfaces were observed by optical microscopy (OM ) and atomic force microscopy (AFM ). The study showed that variations of the parameters such as voltage, frequency and geometric position between the electrodes influence the formation of the plasma jet. It was concluded that the plasma jet near room temperature and atmospheric pressure was able to cause modifications in titanium surface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este projeto propõe desenvolver e implementar um controlador para o sistema de refrigeração da tocha indutiva a plasma térmico. Este processo é feito a partir da medição da temperatura através de um sensor do sistema de refrigeração. O sinal produzido será enviado para uma entrada analógica do microcontrolador da família PIC, que utilizando os conceitos de lógica fuzzy, controla a velocidade de um motor bomba. Este é responsável por diminuir ou aumentar o fluxo circulante de água que passa pela bobina, pelo corpo da tocha e pelo flange de fixação, deixando-os na temperatura desejada. A velocidade desta bomba será controlada por um inversor de frequência. O microcontrolador, também, acionará um ventilador caso exceda a temperatura de referência. A proposta inicial foi o desenvolvimento do controle da temperatura da bobina de uma tocha indutiva a plasma, mas com algumas adequações, foi possível também aplicar no corpo da tocha. Essa tocha será utilizada em uma planta de tratamento de resíduos industriais e efluentes petroquímicos. O controle proposto visa garantir as condições físicas necessárias para tocha de plasma, mantendo a temperatura da água em um determinado nível que permita o resfriamento sem comprometer, no entanto, o rendimento do sistema. No projeto será utilizada uma tocha de plasma com acoplamento indutivo (ICPT), por ter a vantagem de não possuir eletrodos metálicos internos sendo erodidos pelo jato de plasma, evitando uma possível contaminação, e também devido à possibilidade do reaproveitamento energético através da cogeração de energia. O desenvolvimento da tecnologia a plasma na indústria de tratamento de resíduos vem obtendo bons resultados. Aplicações com essa tecnologia têm se tornado cada vez mais importantes por reduzir, em muitos casos, a produção de resíduos e o consumo de energia em vários processos industriais

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work we use a plasma jet system with a hollow cathode to deposit thin TiO2 films on silicon substrates as alternative at sol-gel, PECVD, dip-coating e magnetron sputtering techniques. The cylindrical cathode, made from pure titanium, can be negatively polarized between 0 e 1200 V and supports an electrical current of up to 1 A. An Ar/O2 mixture, with a total flux of 20 sccm and an O2 percentage ranging between 0 and 30%, is passed through a cylindrical hole machined in the cathode. The plasma parameters and your influence on the properties of deposited TiO2 films and their deposition rate was studied. When discharge occurs, titanium atoms are sputtered/evaporated. They are transported by the jet and deposited on the Si substrates located on the substrate holder facing the plasma jet system at a distance ranging between10 and 50 mm from the cathode. The working pressure was 10-3 mbar and the deposition time was 10 -60 min. Deposited films were characterized by scanning electron microscopy and atomic force microscopy to check the film uniformity and morphology and by X-ray diffraction to analyze qualitatively the phases present. Also it is presented the new dispositive denominate ionizing cage, derived from the active screen plasma nitriding (ASPN), but based in hollow cathode effect, recently developed. In this process, the sample was involved in a cage, in which the cathodic potential was applied. The samples were placed on an insulator substrate holder, remaining in a floating potential, and then it was treated in reactive plasma in hollow cathode regime. Moreover, the edge effect was completely eliminated, since the plasma was formed on the cage and not directly onto the samples and uniformity layer was getting in all sampl

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho foi desenvolvido um dispositivo de microdescargas em gases à pressão atmosférica para geração de plasma a fim de ser utilizado no tratamento de superfícies. O trabalho foi baseado em um estudo de iniciação científica que aconteceu em duas etapas. Na introdução apresentam-se as motivações do estudo, o dispositivo desenvolvido na primeira etapa do trabalho bem como os primeiros resultados e propostas de melhorias. Definem-se os objetivos da segunda etapa, que contemplam modificações no dispositivo de descarga e na fonte de alimentação. Em seguida são explanados os métodos utilizados para confecção do dispositivo, construção da fonte de alimentação e circuito de fotodetecção para observar as descargas. Apresenta-se o modelo e configurações dos experimentos, os resultados obtidos são expostos e debatidos brevemente. Colocam-se as conclusões do trabalho e novas propostas de investigação e melhoramentos para o estudo das microdescargas. Seguem-se os agradecimentos aos envolvidos no projeto e, por fim, a bibliografia utilizada

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the development of an electro-mechanical micro-discharges device operating at ambient condition of pressure and temperature, capable to produce plasma jets for surface finishing. The discharges are produced through a needle shape electrode hollow cathode type by which flows the helium gas. The voltage applied on the electrode is provided for an AC/AC switching voltage converter of full-bridge topology. The converter is energized by a power line of 110/220 VAC, 60 Hz and gives a 1000 V peak-to-peak from 5 kHz to 40 kHz square waveform output. The output frequency is defined by a control signal provided by an external signal generator. The equipment setup includes output acquisition of voltage and current and a photo-detector for photo-electrical measurements, which allows an optical characterization of the plasma jet

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the development of an electro-mechanical micro-discharges device operating at ambient condition of pressure and temperature, capable to produce plasma jets for surface finishing. The discharges are produced through a needle shape electrode hollow cathode type by which flows the helium gas. The voltage applied on the electrode is provided for an AC/AC switching voltage converter of full-bridge topology. The converter is energized by a power line of 110/220 VAC, 60 Hz and gives a 1000 V peak-to-peak from 5 kHz to 40 kHz square waveform output. The output frequency is defined by a control signal provided by an external signal generator. The equipment setup includes output acquisition of voltage and current and a photo-detector for photo-electrical measurements, which allows an optical characterization of the plasma jet

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5