950 resultados para Jarosite, Thermal analysis, Controlled rate thermal analysis, Thermogravimetry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as sepiolite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal changes in the sepiolite as the sepiolite is converted to an anhydride. In the dynamic experiment two dehydration steps are observed over the ~20-170 and 170-350°C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201-337, 337-638 and 638-982°C. The CRTA technology enables the separation of the thermal decomposition steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlled rate thermal analysis (CRTA) technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as sepiolite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal changes in the sepiolite as the sepiolite is converted to an anhydride. In the dynamic experiment two dehydration steps are observed over the *20–170 and 170–350 �C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201–337, 337–638 and 638–982 �C. The CRTA technology enables the separation of the thermal decomposition steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrite(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites studied have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations based upon CRTA measurements show that 7 moles of water is lost, proving the formula of hexacyanoferrite(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5 .7 H2O and for the hexacyanoferrate(III) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.66 * 9 H2O. Dehydroxylation combined with CN unit loss occurs in three steps between a) 310 and 367°C b) 367 and 390°C and c) between 390 and 428°C for both the hexacyanoferrite(II) and hexacyanoferrate(III) intercalated hydrotalcite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal behavior of blends of poly(vinylidene fluoride), or PVDF, and poly(o-methoxyaniline) doped with toluene sulfonic acid was studied by thermogravimetic analysis, electrical conductivity measurements, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. Blends with thermal and electrical conductivity stabler than the conductive polymer alone were obtained. Nevertheless, degradation occurs after a long period of time (500 h) at high temperatures. The possible association of the conductivity decay with dopant loss, degradation and structural and morphological changes of the blend is discussed. (C) 2000 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two kinds of coal-bearing kaolinite from China were analysed by X-ray diffraction (XRD), Thermogravimetric analysis-mass spectrometry (TG-MS), infrared emission spectroscopy. Thermal decomposition occurs in a series of steps attributed to (a) desorption of water at 68 °C for Datong coal bearing strata kaolinite and 56 °C for Xiaoxian with mass losses of 0.36 % and 0.51 % (b) decarbonization at 456 °C for Datong coal bearing strata kaolinite and 431 °C for Xiaoxian kaolinite, (c) dehydroxylation takes place in two steps at 589 and 633 °C for Datong coal bearing strata kaolinite and at 507 °C and 579 °C for Xiaoxian kaolinite. This mineral were further characterised by infrared emission spectroscopy (IES). Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed. At 650 °C all intensity in these bands is lost in harmony with the thermal analysis results. Characteristic functional groups from coal are observed at 1918, 1724 and 1459 cm-1. The intensity of these bands decrease by thermal treatment and is lost by 700 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal behaviour of ammonium perchlorate-aluminium composites is studied using differential thermal analysis, thermogravimetry and differential scanning calorimetry. Electrical resistivity studies throw light on the mechanism of ammonium perchlorate decomposition at different aluminium contents. The differences observed in burning behaviour by earlier authors is explained in terms of porosity and thermal conductivity of the composite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some new compounds of cinnamic acid with the latter trivalent lanthanides and yttrium(III) were synthesized in the solid state. The compounds have the general formula LnL3, where Ln represents trivalent Eu to Lu or Y ions and L is the cinnamate anion (C6H5-CH=CH-COO-). Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), infrared absorption spectra and X-ray diffraction powder patterns were used to characterize and to study the thermal behaviour of these compounds. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions of the precursor [Pd(N,C-dmba)(MeCN)2](NO 3) (1) (dmba = N,N-dimethylbenzylamine), with the proligands 3,5-dimethylpyrazole (Hdmpz), 2-quinolinethiol (qnSH) and 1,1′- bis(diphenylphosphine)ferrocene (dppf) afforded the compounds [Pd(N,C-dmba)(Hdmpz)(ONO2)]0.5CH2Cl2 (2), [Pd(N,C-dmba)(qnSH)(ONO2)] 0.5CH2Cl2 (3) and [Pd(N,C-dmba)(dppf)](NO3) (4), respectively. The mononuclear species 2,3 and 4 were characterized by elemental analysis, infrared spectroscopy, NMR and thermogravimetric analysis. The IR spectra show bands which are consistent with terminal monodentate nitrate group for 2-3 and ionic nitrate for 4. The 1H and 13C NMR data confirm that coordination of the organic ligands has occurred and the 31P{1H} NMR data for 4 clearly evidences the occurrence in solution of three cyclopalladated species with the dppf acting as a bridging ligand in two cases and as a chelate in one. The thermal behavior of compounds 1-4 suggests that complex 2 is the most stable. The X-ray diffractometry results show the formation of PdO from 1 and 2, Pd2OSO4 from 3, and of a mixture of PdO and Fe 2(PO4)3 from 4, as final decomposition products.