279 resultados para JHA
Resumo:
We report calculations of energy levels and oscillator strengths for transitions in W XL, undertaken with the general-purpose relativistic atomic structure package (GRASP) and flexible atomic code (FAC). Comparisons are made with existing results and the accuracy of the data is assessed. Discrepancies with the most recent results of S. Aggarwal et al. (Can. J. Phys. 91, 394 (2013)) are up to 0.4 Ryd and up to two orders of magnitude for energy levels and oscillator strengths, respectively. Discrepancies for lifetimes are even larger, up to four orders of magnitude for some levels. Our energy levels are estimated to be accurate to better than 0.5% (i.e., 0.2 Ryd), whereas results for oscillator strengths and lifetimes should be accurate to better than 20%.
Resumo:
This article presents the design and implementation of a trusted sensor node that provides Internet-grade security at low system cost. We describe trustedFleck, which uses a commodity Trusted Platform Module (TPM) chip to extend the capabilities of a standard wireless sensor node to provide security services such as message integrity, confidentiality, authenticity, and system integrity based on RSA public-key and XTEA-based symmetric-key cryptography. In addition trustedFleck provides secure storage of private keys and provides platform configuration registers (PCRs) to store system configurations and detect code tampering. We analyze system performance using metrics that are important for WSN applications such as computation time, memory size, energy consumption and cost. Our results show that trustedFleck significantly outperforms previous approaches (e.g., TinyECC) in terms of these metrics while providing stronger security levels. Finally, we describe a number of examples, built on trustedFleck, of symmetric key management, secure RPC, secure software update, and remote attestation.
Resumo:
Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, S. Brosnan, Design and deployment of a remote robust sensor network: experiences from an outdoor water quality monitoring network, in: Second IEEE Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland, 2007] is one such example. This application involves streaming sensed data such as pressure, water flow rate, and salinity periodically from many scattered sensors to the sink node which in turn relays them via an IP network to a remote site for archiving, processing, and presentation. While latency is not a primary concern in this class of application (the sampling rate is usually in terms of minutes or hours), energy-efficiency is. Continuous long-term operation and reliable delivery of the sensed data to the sink are also desirable. This paper proposes ERTP, an Energy-efficient and Reliable Transport Protocol for Wireless Sensor Networks. ERTP is designed for data streaming applications, in which sensor readings are transmitted from one or more sensor sources to a base station (or sink). ERTP uses a statistical reliability metric which ensures the number of data packets delivered to the sink exceeds the defined threshold. Our extensive discrete event simulations and experimental evaluations show that ERTP is significantly more energyefficient than current approaches and can reduce energy consumption by more than 45% when compared to current approaches. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended WSN is increased.
Resumo:
A wireless sensor network collected real-time water-quality measurements to investigate how current irrigation practices—in particular, underground water salination—affect the environment. New protocols provided high end-to-end packet delivery rates in the hostile deployment environment.