18 resultados para J48


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document aims to describe an update of the implementation of the J48Consolidated class within WEKA platform. The J48Consolidated class implements the CTC algorithm [2][3] which builds a unique decision tree based on a set of samples. The J48Consolidated class extends WEKA’s J48 class which implements the well-known C4.5 algorithm. This implementation was described in the technical report "J48Consolidated: An implementation of CTC algorithm for WEKA". The main, but not only, change in this update is the integration of the notion of coverage in order to determine the number of samples to be generated to build a consolidated tree. We define coverage as the percentage of examples of the training sample present in –or covered by– the set of generated subsamples. So, depending on the type of samples that we use, we will need more or less samples in order to achieve a specific value of coverage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CTC algorithm, Consolidated Tree Construction algorithm, is a machine learning paradigm that was designed to solve a class imbalance problem, a fraud detection problem in the area of car insurance [1] where, besides, an explanation about the classification made was required. The algorithm is based on a decision tree construction algorithm, in this case the well-known C4.5, but it extracts knowledge from data using a set of samples instead of a single one as C4.5 does. In contrast to other methodologies based on several samples to build a classifier, such as bagging, the CTC builds a single tree and as a consequence, it obtains comprehensible classifiers. The main motivation of this implementation is to make public and available an implementation of the CTC algorithm. With this purpose we have implemented the algorithm within the well-known WEKA data mining environment http://www.cs.waikato.ac.nz/ml/weka/). WEKA is an open source project that contains a collection of machine learning algorithms written in Java for data mining tasks. J48 is the implementation of C4.5 algorithm within the WEKA package. We called J48Consolidated to the implementation of CTC algorithm based on the J48 Java class.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most popular techniques of generating classifier ensembles is known as stacking which is based on a meta-learning approach. In this paper, we introduce an alternative method to stacking which is based on cluster analysis. Similar to stacking, instances from a validation set are initially classified by all base classifiers. The output of each classifier is subsequently considered as a new attribute of the instance. Following this, a validation set is divided into clusters according to the new attributes and a small subset of the original attributes of the instances. For each cluster, we find its centroid and calculate its class label. The collection of centroids is considered as a meta-classifier. Experimental results show that the new method outperformed all benchmark methods, namely Majority Voting, Stacking J48, Stacking LR, AdaBoost J48, and Random Forest, in 12 out of 22 data sets. The proposed method has two advantageous properties: it is very robust to relatively small training sets and it can be applied in semi-supervised learning problems. We provide a theoretical investigation regarding the proposed method. This demonstrates that for the method to be successful, the base classifiers applied in the ensemble should have greater than 50% accuracy levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to show the importance of two classification techniques, viz. decision tree and clustering, in prediction of learning disabilities (LD) of school-age children. LDs affect about 10 percent of all children enrolled in schools. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Decision trees and clustering are powerful and popular tools used for classification and prediction in Data mining. Different rules extracted from the decision tree are used for prediction of learning disabilities. Clustering is the assignment of a set of observations into subsets, called clusters, which are useful in finding the different signs and symptoms (attributes) present in the LD affected child. In this paper, J48 algorithm is used for constructing the decision tree and K-means algorithm is used for creating the clusters. By applying these classification techniques, LD in any child can be identified

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper highlights the prediction of Learning Disabilities (LD) in school-age children using two classification methods, Support Vector Machine (SVM) and Decision Tree (DT), with an emphasis on applications of data mining. About 10% of children enrolled in school have a learning disability. Learning disability prediction in school age children is a very complicated task because it tends to be identified in elementary school where there is no one sign to be identified. By using any of the two classification methods, SVM and DT, we can easily and accurately predict LD in any child. Also, we can determine the merits and demerits of these two classifiers and the best one can be selected for the use in the relevant field. In this study, Sequential Minimal Optimization (SMO) algorithm is used in performing SVM and J48 algorithm is used in constructing decision trees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this thesis project is to prediction of symptom severity and cause in data from test battery of the Parkinson’s disease patient, which is based on data mining. The collection of the data is from test battery on a hand in computer. We use the Chi-Square method and check which variables are important and which are not important. Then we apply different data mining techniques on our normalize data and check which technique or method gives good results.The implementation of this thesis is in WEKA. We normalize our data and then apply different methods on this data. The methods which we used are Naïve Bayes, CART and KNN. We draw the Bland Altman and Spearman’s Correlation for checking the final results and prediction of data. The Bland Altman tells how the percentage of our confident level in this data is correct and Spearman’s Correlation tells us our relationship is strong. On the basis of results and analysis we see all three methods give nearly same results. But if we see our CART (J48 Decision Tree) it gives good result of under predicted and over predicted values that’s lies between -2 to +2. The correlation between the Actual and Predicted values is 0,794in CART. Cause gives the better percentage classification result then disability because it can use two classes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wikipedia is a free, web-based, collaborative, multilingual encyclopedia project supported by the non-profit Wikimedia Foundation. Due to the free nature of Wikipedia and allowing open access to everyone to edit articles the quality of articles may be affected. As all people don’t have equal level of knowledge and also different people have different opinions about a topic so there may be difference between the contributions made by different authors. To overcome this situation it is very important to classify the articles so that the articles of good quality can be separated from the poor quality articles and should be removed from the database. The aim of this study is to classify the articles of Wikipedia into two classes class 0 (poor quality) and class 1(good quality) using the Adaptive Neuro Fuzzy Inference System (ANFIS) and data mining techniques. Two ANFIS are built using the Fuzzy Logic Toolbox [1] available in Matlab. The first ANFIS is based on the rules obtained from J48 classifier in WEKA while the other one was built by using the expert’s knowledge. The data used for this research work contains 226 article’s records taken from the German version of Wikipedia. The dataset consists of 19 inputs and one output. The data was preprocessed to remove any similar attributes. The input variables are related to the editors, contributors, length of articles and the lifecycle of articles. In the end analysis of different methods implemented in this research is made to analyze the performance of each classification method used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.Results: In this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.Conclusions: We were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En los últimos años han surgido nuevos campos de las tecnologías de la información que exploran el tratamiento de la gran cantidad de datos digitales existentes y cómo transformarlos en conocimiento explícito. Las técnicas de Procesamiento del Lenguaje Natural (NLP) son capaces de extraer información de los textos digitales presentados en forma narrativa. Además, las técnicas de machine learning clasifican instancias o ejemplos en función de sus atributos, en distintas categorías, aprendiendo de otros previamente clasificados. Los textos clínicos son una gran fuente de información no estructurada; en consecuencia, información no explotada en su totalidad. Algunos términos usados en textos clínicos se encuentran en una situación de afirmación, negación, hipótesis o histórica. La detección de esta situación es necesaria para la estructuración de información, pero a su vez tiene una gran complejidad. Extrayendo características lingüísticas de los elementos, o tokens, de los textos mediante NLP; transformando estos tokens en instancias y las características en atributos, podemos mediante técnicas de machine learning clasificarlos con el objetivo de detectar si se encuentran afirmados, negados, hipotéticos o históricos. La selección de los atributos que cada token debe tener para su clasificación, así como la selección del algoritmo de machine learning utilizado son elementos cruciales para la clasificación. Son, de hecho, los elementos que componen el modelo de clasificación. Consecuentemente, este trabajo aborda el proceso de extracción de características, selección de atributos y selección del algoritmo de machine learning para la detección de la negación en textos clínicos en español. Se expone un modelo para la clasificación que, mediante el algoritmo J48 y 35 atributos obtenidos de características lingüísticas (morfológicas y sintácticas) y disparadores de negación, detecta si un token está negado en 465 frases provenientes de textos clínicos con un F-Score del 73%, una exhaustividad del 66% y una precisión del 81% con una validación cruzada de 10 iteraciones. ---ABSTRACT--- New information technologies have emerged in the recent years which explore the processing of the huge amount of existing digital data and its transformation into knowledge. Natural Language Processing (NLP) techniques are able to extract certain features from digital texts. Additionally, through machine learning techniques it is feasible to classify instances according to different categories, learning from others previously classified. Clinical texts contain great amount of unstructured data, therefore information not fully exploited. Some terms (tokens) in clinical texts appear in different situations such as affirmed, negated, hypothetic or historic. Detecting this situation is necessary for the structuring of this data, however not simple. It is possible to detect whether if a token is negated, affirmed, hypothetic or historic by extracting its linguistic features by NLP; transforming these tokens into instances, the features into attributes, and classifying these instances through machine learning techniques. Selecting the attributes each instance must have, and choosing the machine learning algorithm are crucial issues for the classification. In fact, these elements set the classification model. Consequently, this work approaches the features retrieval as well as the attributes and algorithm selection process used by machine learning techniques for the detection of negation in clinical texts in Spanish. We present a classification model which, through J48 algorithm and 35 attributes from linguistic features (morphologic and syntactic) and negation triggers, detects whether if a token is negated in 465 sentences from historical records, with a result of 73% FScore, 66% recall and 81% precision using a 10-fold cross-validation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manuel Schnitzer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von Heinrich Loewe