949 resultados para Isometric log ratios


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A resposta da goiabeira à calagem e à adubação pode ser monitorada por análises de tecido vegetal. O perfil nutricional é definido em relação a padrões de teores de nutrientes. No entanto, os teores de nutrientes-padrão são constantemente criticados por não considerarem as interações que ocorrem entre nutrientes e por gerarem tendências numéricas, decorrentes da redundância dos dados, da dependência de escala e da distribuição não normal. As técnicas de análise composicional de dados podem controlar esses dados tendenciosos, equilibrando os grupos de nutrientes, tais como os envolvidos na calagem e na adubação. A utilização das relações log isométricas (ilr) ortonormais, sequencialmente dispostas, evita tendências numéricas inerentes aos dados de composição. Os objetivos do trabalho foram relacionar o balanço de nutrientes dos tecidos vegetais com a produção de goiabeiras em pomares de 'Paluma' diferentemente corrigidos e adubados, e ajustar os atuais padrões de nutrientes com a faixa de equilíbrio das goiabeiras mais produtivas. Um experimento de calagem de sete anos e três, experimentos de três anos com doses de N, P2O5 e K2O, foram conduzidos em pomares de goiabeiras 'Paluma' em um Latossolo Vermelho-Amarelo. Os teores de N, P, K, Ca e Mg na planta foram monitorados anualmente. Selecionaram-se os balanços [N, P, K | Ca, Mg], [N, P | K], [N | P] e [Ca | Mg] para separar os efeitos da calagem (Ca-Mg) e dos fertilizantes (N-K) nos balanços de macronutrientes. Os balanços foram mais influenciados pela calagem do que pela fertilização. A produtividade das goiabeiras e seu balanço nutricional permitiram a definição de faixas de equilíbrio de nutrientes e sua validação com as faixas de concentrações críticas atualmente utilizadas no Brasil e combinadas em coordenadas ilr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil aggregation is an index of soil structure measured by mean weight diameter (MWD) or scaling factors often interpreted as fragmentation fractal dimensions (D-f). However, the MWD provides a biased estimate of soil aggregation due to spurious correlations among aggregate-size fractions and scale-dependency. The scale-invariant D-f is based on weak assumptions to allow particle counts and sensitive to the selection of the fractal domain, and may frequently exceed a value of 3, implying that D-f is a biased estimate of aggregation. Aggregation indices based on mass may be computed without bias using compositional analysis techniques. Our objective was to elaborate compositional indices of soil aggregation and to compare them to MWD and D-f using a published dataset describing the effect of 7 cropping systems on aggregation. Six aggregate-size fractions were arranged into a sequence of D-1 balances of building blocks that portray the process of soil aggregation. Isometric log-ratios (ilrs) are scale-invariant and orthogonal log contrasts or balances that possess the Euclidean geometry necessary to compute a distance between any two aggregation states, known as the Aitchison distance (A(x,y)). Close correlations (r>0.98) were observed between MWD, D-f, and the ilr when contrasting large and small aggregate sizes. Several unbiased embedded ilrs can characterize the heterogeneous nature of soil aggregates and be related to soil properties or functions. Soil bulk density and penetrater resistance were closely related to A(x,y) with reference to bare fallow. The A(x,y) is easy to implement as unbiased index of soil aggregation using standard sieving methods and may allow comparisons between studies. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fertilization of guava relies on soil and tissue testing. The interpretation of tissue test is currently conducted by comparing nutrient concentrations or dual ratios with critical values or ranges. The critical value approach is affected by nutrient interactions. Nutrient interactions can be described by dual ratios where two nutrients are compressed into a single expression or a ternary diagrams where one redundant proportion can be computed by difference between 100% and the sum of the other two. There are D(D-1) possible dual ratios in a D-parts composition and most of them are thus redundant. Nutrients are components of a mixture that convey relative, not absolute information on the composition. There are D-1 balances between components or ingredients in any mixture. Compositional data are intrinsically redundant, scale dependent and non-normally distributed. Based on the principles of equilibrium and orthogonality, the nutrient balance concept projects D-1 isometric log ratio (ilr) coordinates into the Euclidean space. The D-1 balances between groups of nutrients are ordered to reflect knowledge in plant physiology, soil fertility and crop management. Our objective was to evaluate the ilr approach using nutrient data from a guava orchard survey and fertilizer trials across the state of São Paulo, Brazil. Cationic balances varied widely between orchards. We found that the Redfield N/P ratio of 13 was critical for high guava yield. We present guava yield maps in ternary diagrams. Although the ratio between nutrients changing in the same direction with time is often assumed to be stationary, most guava nutrient balances and dual ratios were found to be non-stationary. The ilr model provided an unbiased nutrient diagnosis of guava. © ISHS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single component geochemical maps are the most basic representation of spatial elemental distributions and commonly used in environmental and exploration geochemistry. However, the compositional nature of geochemical data imposes several limitations on how the data should be presented. The problems relate to the constant sum problem (closure), and the inherently multivariate relative information conveyed by compositional data. Well known is, for instance, the tendency of all heavy metals to show lower values in soils with significant contributions of diluting elements (e.g., the quartz dilution effect); or the contrary effect, apparent enrichment in many elements due to removal of potassium during weathering. The validity of classical single component maps is thus investigated, and reasonable alternatives that honour the compositional character of geochemical concentrations are presented. The first recommended such method relies on knowledge-driven log-ratios, chosen to highlight certain geochemical relations or to filter known artefacts (e.g. dilution with SiO2 or volatiles). This is similar to the classical normalisation approach to a single element. The second approach uses the (so called) log-contrasts, that employ suitable statistical methods (such as classification techniques, regression analysis, principal component analysis, clustering of variables, etc.) to extract potentially interesting geochemical summaries. The caution from this work is that if a compositional approach is not used, it becomes difficult to guarantee that any identified pattern, trend or anomaly is not an artefact of the constant sum constraint. In summary the authors recommend a chain of enquiry that involves searching for the appropriate statistical method that can answer the required geological or geochemical question whilst maintaining the integrity of the compositional nature of the data. The required log-ratio transformations should be applied followed by the chosen statistical method. Interpreting the results may require a closer working relationship between statisticians, data analysts and geochemists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A substantial proportion of aetiological risks for many cancers and chronic diseases remain unexplained. Using geochemical soil and stream water samples collected as part of the Tellus Project studies, current research is investigating naturally occurring background levels of potentially toxic elements (PTEs) in soils and stream sediments and their possible relationship with progressive chronic kidney disease (CKD). The Tellus geological mapping project, Geological Survey Northern Ireland, collected soil sediment and stream water samples on a grid of one sample site every 2 km2 across the rural areas of Northern Ireland resulting in an excess of 6800 soil sampling locations and more than 5800 locations for stream water sampling. Accumulation of several PTEs including arsenic, cadmium, chromium, lead and mercury have been linked with human health and implicated in renal function decline. The hypothesis is that long-term exposure will result in cumulative exposure to PTEs and act as risk factor(s) for cancer and diabetes related CKD and its progression. The ‘bioavailable’ fraction of total PTE soil concentration depends on the ‘bioaccessible’ proportion through an exposure pathway. Recent work has explored this bioaccessible fraction for a range of PTEs across Northern Ireland. In this study the compositional nature of the multivariate geochemical PTE variables and bioaccessible data is explored to augment the investigation into the potential relationship between PTEs, bioaccessibility and disease data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compositional data naturally arises from the scientific analysis of the chemical composition of archaeological material such as ceramic and glass artefacts. Data of this type can be explored using a variety of techniques, from standard multivariate methods such as principal components analysis and cluster analysis, to methods based upon the use of log-ratios. The general aim is to identify groups of chemically similar artefacts that could potentially be used to answer questions of provenance. This paper will demonstrate work in progress on the development of a documented library of methods, implemented using the statistical package R, for the analysis of compositional data. R is an open source package that makes available very powerful statistical facilities at no cost. We aim to show how, with the aid of statistical software such as R, traditional exploratory multivariate analysis can easily be used alongside, or in combination with, specialist techniques of compositional data analysis. The library has been developed from a core of basic R functionality, together with purpose-written routines arising from our own research (for example that reported at CoDaWork'03). In addition, we have included other appropriate publicly available techniques and libraries that have been implemented in R by other authors. Available functions range from standard multivariate techniques through to various approaches to log-ratio analysis and zero replacement. We also discuss and demonstrate a small selection of relatively new techniques that have hitherto been little-used in archaeometric applications involving compositional data. The application of the library to the analysis of data arising in archaeometry will be demonstrated; results from different analyses will be compared; and the utility of the various methods discussed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogeological research usually includes some statistical studies devised to elucidate mean background state, characterise relationships among different hydrochemical parameters, and show the influence of human activities. These goals are achieved either by means of a statistical approach or by mixing models between end-members. Compositional data analysis has proved to be effective with the first approach, but there is no commonly accepted solution to the end-member problem in a compositional framework. We present here a possible solution based on factor analysis of compositions illustrated with a case study. We find two factors on the compositional bi-plot fitting two non-centered orthogonal axes to the most representative variables. Each one of these axes defines a subcomposition, grouping those variables that lay nearest to it. With each subcomposition a log-contrast is computed and rewritten as an equilibrium equation. These two factors can be interpreted as the isometric log-ratio coordinates (ilr) of three hidden components, that can be plotted in a ternary diagram. These hidden components might be interpreted as end-members. We have analysed 14 molarities in 31 sampling stations all along the Llobregat River and its tributaries, with a monthly measure during two years. We have obtained a bi-plot with a 57% of explained total variance, from which we have extracted two factors: factor G, reflecting geological background enhanced by potash mining; and factor A, essentially controlled by urban and/or farming wastewater. Graphical representation of these two factors allows us to identify three extreme samples, corresponding to pristine waters, potash mining influence and urban sewage influence. To confirm this, we have available analysis of diffused and widespread point sources identified in the area: springs, potash mining lixiviates, sewage, and fertilisers. Each one of these sources shows a clear link with one of the extreme samples, except fertilisers due to the heterogeneity of their composition. This approach is a useful tool to distinguish end-members, and characterise them, an issue generally difficult to solve. It is worth note that the end-member composition cannot be fully estimated but only characterised through log-ratio relationships among components. Moreover, the influence of each endmember in a given sample must be evaluated in relative terms of the other samples. These limitations are intrinsic to the relative nature of compositional data

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A compositional time series is obtained when a compositional data vector is observed at different points in time. Inherently, then, a compositional time series is a multivariate time series with important constraints on the variables observed at any instance in time. Although this type of data frequently occurs in situations of real practical interest, a trawl through the statistical literature reveals that research in the field is very much in its infancy and that many theoretical and empirical issues still remain to be addressed. Any appropriate statistical methodology for the analysis of compositional time series must take into account the constraints which are not allowed for by the usual statistical techniques available for analysing multivariate time series. One general approach to analyzing compositional time series consists in the application of an initial transform to break the positive and unit sum constraints, followed by the analysis of the transformed time series using multivariate ARIMA models. In this paper we discuss the use of the additive log-ratio, centred log-ratio and isometric log-ratio transforms. We also present results from an empirical study designed to explore how the selection of the initial transform affects subsequent multivariate ARIMA modelling as well as the quality of the forecasts

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parent, L. E., Natale, W. and Ziadi, N. 2009. Compositional nutrient diagnosis of corn using the Mahalanobis distance as nutrient imbalance index. Can. J. Soil Sci. 89: 383-390. Compositional nutrient diagnosis (CND) provides a plant nutrient imbalance index (CND - r(2)) with assumed chi(2) distribution. The Mahalanobis distance D(2), which detects outliers in compositional data sets, also has a chi(2) distribution. The objective of this paper was to compare D(2) and CND - r(2) nutrient imbalance indexes in corn (Zea mays L.). We measured grain yield as well as N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn concentrations in the ear leaf at silk stage for 210 calibration sites in the St. Lawrence Lowlands [2300-2700 corn thermal units (CTU)] as well as 30 phosphorus (2300-2700 CTU; 10 sites) and 10 nitrogen (1900-2100 CTU; one site) replicated fertilizer treatments for validation. We derived CND norms as mean, standard deviation, and the inverse covariance matrix of centred log ratios (clr) for high yielding specimens (>= 9.0 Mg grain ha(-1) at 150 g H(2)O kg(-1) moisture content) in the 2300-2700 CTU zone. Using chi(2) = 17 (P < 0.05) with nine degrees of freedom (i.e., nine nutrients) as a rejection criterion for outliers and a yield threshold of 8.6 Mg ha(-1) after Cate-Nelson partitioning between low- and high-yielders in the P validation data set, D(2) misclassified two specimens compared with nine for CND -r(2). The D(2) classification was not significantly different from a chi(2) classification (P > 0.05), but the CND - r(2) classification differed significantly from chi(2) or D(2) (P < 0.001). A threshold value for nutrient imbalance could thus be derived probabilistically for conducting D(2) diagnosis, while the CND - r(2) nutrient imbalance threshold must be calibrated using fertilizer trials. In the proposed CND - D(2) procedure, D(2) is first computed to classify the specimen as possible outlier. Thereafter, nutrient indices are ranked in their order of limitation. The D(2) norms appeared less effective in the 1900-2100 CTU zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dataset characterizes the evolution of western African precipitation indicated by marine sediment geochemical records in comparison to transient simulations using CCSM3 global climate model throughout the Last Interglacial (130-115 ka). It contains (1) defined tie-points (age models), newly published stable isotopes of benthic foraminifera and Al/Si log-ratios of eight marine sediment cores from the western African margin and (2) annual and seasonal rainfall anomalies (relative to pre-industrial values) for six characteristic latitudinal bands in western Africa simulated by CCSM3 (two transient simulations: one non-accelerated and one accelerated experiment).