19 resultados para Isoluminant
Resumo:
We compared the responsiveness of the LGN and the early retinotopic cortical areas to stimulation of the two cone-opponent systems (red - green and blue - yellow) and the achromatic system. This was done at two contrast levels to control for any effect of contrast. MR images were acquired on seven subjects with a 4T Bruker MedSpec scanner. The early visual cortical areas were localised by phase encoded retinotopic mapping with a volumetric analysis (Dumoulin et al, 2003 NeuroImage 18 576 - 587). We initially located the LGN in four subjects by using flickering stimuli in a separate scanning session, but subsequently identified it using the experimental stimuli. Experimental stimuli were sine-wave counterphasing rings (2 Hz, 0.5 cycle deg-1), cardinal for the selective activation of the L/M cone-opponent (RG), S cone-opponent (BY), and achromatic (Ach) systems. A region of interest analysis was performed. When presented at equivalent absolute contrasts (cone contrast = 5% - 6%), the BOLD response of the LGN is strongest to isoluminant red - green stimuli and weakest to blue - yellow stimuli, with the achromatic response falling in between. Area V1, on the other hand, responds best to both chromatic stimuli, with the achromatic response falling below. The key change from the LGN to V1 is a dramatic boost in the relative blue - yellow response, which occurred at both contrast levels used. This greatly enhanced cortical response to blue - yellow relative to the red - green and achromatic responses may be due to an increase in cell number and/or cell response between the LGN and V1. We speculate that the effect might reflect the operation of contrast constancy across colour mechanisms at the cortical level.
Resumo:
NlmCategory="UNASSIGNED">Objects' borders are readily perceived despite absent contrast gradients, e.g. due to poor lighting or occlusion. In humans, a visual evoked potential (VEP) correlate of illusory contour (IC) sensitivity, the "IC effect", has been identified with an onset at ~90ms and generators within bilateral lateral occipital cortices (LOC). The IC effect is observed across a wide range of stimulus parameters, though until now it always involved high-contrast achromatic stimuli. Whether IC perception and its brain mechanisms differ as a function of the type of stimulus cue remains unknown. Resolving such will provide insights on whether there is a unique or multiple solutions to how the brain binds together spatially fractionated information into a cohesive perception. Here, participants discriminated IC from no-contour (NC) control stimuli that were either comprised of low-contrast achromatic stimuli or instead isoluminant chromatic contrast stimuli (presumably biasing processing to the magnocellular and parvocellular pathways, respectively) on separate blocks of trials. Behavioural analyses revealed that ICs were readily perceived independently of the stimulus cue-i.e. when defined by either chromatic or luminance contrast. VEPs were analysed within an electrical neuroimaging framework and revealed a generally similar timing of IC effects across both stimulus contrasts (i.e. at ~90ms). Additionally, an overall phase shift of the VEP on the order of ~30ms was consistently observed in response to chromatic vs. luminance contrast independently of the presence/absence of ICs. Critically, topographic differences in the IC effect were observed over the ~110-160ms period; different configurations of intracranial sources contributed to IC sensitivity as a function of stimulus contrast. Distributed source estimations localized these differences to LOC as well as V1/V2. The present data expand current models by demonstrating the existence of multiple, cue-dependent circuits in the brain for generating perceptions of illusory contours.
Resumo:
La présente thèse avait pour mandat d’examiner la question suivante : quels sont les indices visuels utilisés pour catégoriser le sexe d’un visage et comment sont-ils traités par le cerveau humain? La plupart des études examinant l’importance de certaines régions faciales pour la catégorisation du sexe des visages présentaient des limites quant à leur validité externe. L’article 1 visait à investiguer l’utilisation des indices achromatiques et chromatiques (sur l’axe xy) dans un contexte de plus grande validité externe. Pour ce faire, nous avons utilisé la technique Bubbles afin d’échantillonner l’espace xy de visages en couleurs n’ayant subi aucune transformation. Afin d’éviter les problèmes liés à la grande répétition des mêmes visages, nous avons utilisé un grand nombre de visages (c.-à-d. 300 visages caucasiens d’hommes et de femmes) et chaque visage n’a été présenté qu’une seule fois à chacun des 30 participants. Les résultats indiquent que la région des yeux et des sourcils—probablement dans le canal blanc-noir—est l’indice le plus important pour discriminer correctement le genre des visages; et que la région de la bouche—probablement dans le canal rouge-vert—est l’indice le plus important pour discriminer rapidement et correctement le genre des visages. Plusieurs études suggèrent qu’un indice facial que nous n’avons pas étudié dans l’article 1—les distances interattributs—est crucial à la catégorisation du sexe. L’étude de Taschereau et al. (2010) présente toutefois des données allant à l’encontre de cette hypothèse : les performances d’identification des visages étaient beaucoup plus faibles lorsque seules les distances interattributs réalistes étaient disponibles que lorsque toutes les autres informations faciales à l’exception des distances interattributs réalistes étaient disponibles. Quoi qu’il en soit, il est possible que la faible performance observée dans la condition où seules les distances interattributs étaient disponibles soit explicable non par une incapacité d’utiliser ces indices efficacement, mais plutôt par le peu d’information contenue dans ces indices. L’article 2 avait donc comme objectif principal d’évaluer l’efficacité—une mesure de performance qui compense pour la faiblesse de l’information disponible—des distances interattributs réalistes pour la catégorisation du sexe des visages chez 60 participants. Afin de maximiser la validité externe, les distances interattributs manipulées respectaient la distribution et la matrice de covariance observées dans un large échantillon de visages (N=515). Les résultats indiquent que les efficacités associées aux visages ne possédant que de l’information au niveau des distances interattributs sont un ordre de magnitude plus faibles que celles associées aux visages possédant toute l’information que possèdent normalement les visages sauf les distances interattributs et donnent le coup de grâce à l’hypothèse selon laquelle les distances interattributs seraient cuciale à la discrimination du sexe des visages. L’article 3 avait pour objectif principal de tester l’hypothèse formulée à la fin de l’article 1 suivant laquelle l’information chromatique dans la région de la bouche serait extraite très rapidement par le système visuel lors de la discrimination du sexe. Cent douze participants ont chacun complété 900 essais d’une tâche de discrimination du genre pendant laquelle l’information achromatique et chromatique des visages était échantillonnée spatiotemporellement avec la technique Bubbles. Les résultats d’une analyse présentée en Discussion seulement confirme l’utilisation rapide de l’information chromatique dans la région de la bouche. De plus, l’utilisation d’un échantillonnage spatiotemporel nous a permis de faire des analyses temps-fréquences desquelles a découlé une découverte intéressante quant aux mécanismes d’encodage des informations spatiales dans le temps. Il semblerait que l’information achromatique et chromatique à l’intérieur d’une même région faciale est échantillonnée à la même fréquence par le cerveau alors que les différentes parties du visage sont échantillonnées à des fréquences différentes (entre 6 et 10 Hz). Ce code fréquentiel est compatible avec certaines évidences électrophysiologiques récentes qui suggèrent que les parties de visages sont « multiplexées » par la fréquence d’oscillations transitoires synchronisées dans le cerveau.
Resumo:
Previous studies on motion perception revealed motion-processing brain areas sensitive to changes in luminance and texture (low-level) and changes in salience (high-level). The present functional magnetic resonance imaging (fMRI) study focused on motion standstill. This phenomenon, occurring at fast presentation frequencies of visual moving objects that are perceived as static, has not been previously explored by neuroimaging techniques. Thirteen subjects were investigated while perceiving apparent motion at 4 Hz, at 30 Hz (motion standstill), isoluminant static and flickering stimuli, fixation cross, and blank screen, presented randomly and balanced for rapid event-related fMRI design. Blood oxygenation level-dependent (BOLD) signal in the occipito-temporal brain region MT/V5 increased during apparent motion perception. Here we could demonstrate that brain areas like the posterior part of the right inferior parietal lobule (IPL) demonstrated higher BOLD-signal during motion standstill. These findings suggest that the activation of higher-order motion areas is elicited by apparent motion at high presentation rates (motion standstill). We interpret this observation as a manifestation of an orienting reaction in IPL towards stimulus motion that might be detected but not resolved by other motion-processing areas (i.e., MT/V5).
Resumo:
V2 has long been recognized to contain functionally distinguishable compartments that are correlated with the stripelike pattern of cytochrome oxidase activity. Early electrophysiological studies suggested that color, direction/disparity, and orientation selectivity were largely segregated in the thin, thick, and interstripes, respectively. Subsequent studies revealed a greater degree of homogeneity in the distribution of response properties across stripes, yet color-selective cells were still found to be most prevalent in the thin stripes. Optical recording studies have demonstrated that thin stripes contain both color-preferring and luminance-preferring modules. These thin stripe color-preferring modules contain spatially organized hue maps, whereas the luminance-preferring modules contain spatially organized luminance-change maps. In this study, the neuronal basis of these hue maps was determined by characterizing the selectivity of neurons for isoluminant hues in multiple penetrations within previously characterized V2 thin stripe hue maps. The results indicate that neurons within the superficial layers of V2 thin stripe hue maps are organized into columns whose aggregated hue selectivity is closely related to the hue selectivity of the optically defined hue maps. These data suggest that thin stripes contain hue maps not simply because of their moderate percentage of hue-selective neurons, but because of the columnar and tangential organization of hue selectivity.
Resumo:
In motion standstill, a quickly moving object appears to stand still, and its details are clearly visible. It is proposed that motion standstill can occur when the spatiotemporal resolution of the shape and color systems exceeds that of the motion systems. For moving red-green gratings, the first- and second-order motion systems fail when the grating is isoluminant. The third-order motion system fails when the green/red saturation ratio produces isosalience (equal distinctiveness of red and green). When a variety of high-contrast red-green gratings, with different spatial frequencies and speeds, were made isoluminant and isosalient, the perception of motion standstill was so complete that motion direction judgments were at chance levels. Speed ratings also indicated that, within a narrow range of luminance contrasts and green/red saturation ratios, moving stimuli were perceived as absolutely motionless. The results provide further evidence that isoluminant color motion is perceived only by the third-order motion system, and they have profound implications for the nature of shape and color perception.
Resumo:
We measured the regions in isoluminant color space over which observers perceive red, yellow, green, and blue and examined the extent to which the colors vary in perceived amount within these regions. We compared color scaling of various isoluminant stimuli by using large spots, which activate all cone types, to that with tiny spots in the central foveola, where S cones, and thus S opponent (So) cell activity, are largely or entirely absent. The addition of So input to that from the L and M opponent cells changes the chromatic appearance of all colors, affecting each primary color in different chromatic regions in the directions and by the amount predicted by our color model. Shifts from white to the various chromatic stimuli we used produced sinusoidal variations in cone activation as a function of color angle for each cone type and in the responses of lateral geniculate cells. However, psychophysical color-scaling functions for 2° spots were nonsinusoidal, being much more peaked. The color-scaling functions are well fit by sine waves raised to exponents between 1 and 3. The same is true for the color responses of a large subpopulation of striate cortex cells. The narrow color tuning, the discrepancies between the spectral loci of the peaks of the color-scaling curves and those of lateral geniculate cells, and the changes in color appearance produced by eliminating So input provide evidence for a cortical processing stage at which the color axes are rotated by a combination of the outputs of So cells with those of L and M opponent cells in the manner that we postulated earlier. There seems to be an expansive response nonlinearity at this stage.
Resumo:
Moving borders defined by small luminance changes (or colour) can appear to jitter at a characteristic frequency when they are placed in close proximity to moving borders defined by large luminance changes (Arnold & Johnston, 2003). Using psychophysical techniques, we have now shown that illusory jitter can be generated when these different motion signals are shown selectively to either eye – implicating a cortical locus for illusory jitter generation. Using magneto-enceohalography (MEG) to record brain activity, we have also found that brain oscillations, of the same frequency as the illusory jitter rate, are enhanced when illusory jitter is experienced. This does not occur when observers are exposed to either isolated motion signals defined by small luminance changes (or colour) or to physical jitter of the same frequency as the illusory jitter. We believe therefore that the enhanced brain activity is related to illusory jitter generation rather than to jitter perception, or to isoluminant motion, per se. These observations support our hypothesis that this illusory jitter is generated in cortex by a dynamic feedback circuit. We believe that this circuit periodically corrects for a spatial conflict generated by proximate motion signals that differ in perceived speed.
Resumo:
We sought to determine the extent to which colour (and luminance) signals contribute towards the visuomotor localization of targets. To do so we exploited the movement-related illusory displacement a small stationary window undergoes when it has a continuously moving carrier grating behind it. We used drifting (1.0-4.2 Hz) red/green-modulated isoluminant gratings or yellow/black luminance-modulated gratings as carriers, each curtailed in space by a stationary, two-dimensional window. After each trial, the perceived location of the window was recorded with reference to an on-screen ruler (perceptual task) or the on-screen touch of a ballistic pointing movement made without visual feedback (visuomotor task). Our results showed that the perceptual displacement measures were similar for each stimulus type and weakly dependent on stimulus drift rate. However, while the visuomotor displacement measures were similar for each stimulus type at low drift rates (<4 Hz), they were significantly larger for luminance than colour stimuli at high drift rates (>4 Hz). We show that the latter cannot be attributed to differences in perceived speed between stimulus types. We assume, therefore, that our visuomotor localization judgements were more susceptible to the (carrier) motion of luminance patterns than colour patterns. We suggest that, far from being detrimental, this susceptibility may indicate the operation of mechanisms designed to counter the temporal asynchrony between perceptual experiences and the physical changes in the environment that give rise to them. We propose that perceptual localisation is equally supported by both colour and luminance signals but that visuomotor localisation is predominantly supported by luminance signals. We discuss the neural pathways that may be involved with visuomotor localization. © 2007 Springer-Verlag.
Resumo:
We sought to determine the extent to which red–green, colour–opponent mechanisms in the human visual system play a role in the perception of drifting luminance–modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance–modulated (yellow–black) test sinusoids was measured following adaptation to isoluminant red–green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1–16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1–4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal–frequency–dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance–modulated motion targets drifting at speeds of up to at least 32°s-1. We argue that such mechanisms most probably lie within a parvocellular–dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.
Resumo:
Gamma activity in the visual cortex has been reported in numerous EEG studies of coherent and illusory figures. A dominant theme of many such findings has been that temporal synchronization in the gamma band in response to these identifiable percepts is related to perceptual binding of the common features of the stimulus. In two recent studies using magnetoencephalography (MEG) and the beamformer analysis technique, we have shown that the magnitude of induced gamma activity in visual cortex is dependent upon independent stimulus features such as spatial frequency and contrast. In particular, we showed that induced gamma activity is maximal in response to gratings of 3 cycles per degree (3 cpd) of high luminance contrast. In this work, we set out to examine stimulus contrast further by using isoluminant red/green gratings that possess color but not luminance contrast using the same cohort of subjects. We found no induced gamma activity in V1 or visual cortex in response to the isoluminant gratings in these subjects who had previously shown strong induced gamma activity in V1 for luminance contrast gratings.
Resumo:
The work presented in this thesis is divided into two distinct sections. In the first, the functional neuroimaging technique of Magnetoencephalography (MEG) is described and a new technique is introduced for accurate combination of MEG and MRI co-ordinate systems. In the second part of this thesis, MEG and the analysis technique of SAM are used to investigate responses of the visual system in the context of functional specialisation within the visual cortex. In chapter one, the sources of MEG signals are described, followed by a brief description of the necessary instrumentation for accurate MEG recordings. This chapter is concluded by introducing the forward and inverse problems of MEG, techniques to solve the inverse problem, and a comparison of MEG with other neuroimaging techniques. Chapter two provides an important contribution to the field of research with MEG. Firstly, it is described how MEG and MRI co-ordinate systems are combined for localisation and visualisation of activated brain regions. A previously used co-registration methods is then described, and a new technique is introduced. In a series of experiments, it is demonstrated that using fixed fiducial points provides a considerable improvement in the accuracy and reliability of co-registration. Chapter three introduces the visual system starting from the retina and ending with the higher visual rates. The functions of the magnocellular and the parvocellular pathways are described and it is shown how the parallel visual pathways remain segregated throughout the visual system. The structural and functional organisation of the visual cortex is then described. Chapter four presents strong evidence in favour of the link between conscious experience and synchronised brain activity. The spatiotemporal responses of the visual cortex are measured in response to specific gratings. It is shown that stimuli that induce visual discomfort and visual illusions share their physical properties with those that induce highly synchronised gamma frequency oscillations in the primary visual cortex. Finally chapter five is concerned with localization of colour in the visual cortex. In this first ever use of Synthetic Aperture Magnetometry to investigate colour processing in the visual cortex, it is shown that in response to isoluminant chromatic gratings, the highest magnitude of cortical activity arise from area V2.
Resumo:
In an endeavour to provide further insight into the maturation of the cortical visual system in human infants, chromatic transient pattern reversal visual evoked potentials to red/green stimuli, were studied in a group of normal full term infants between the ages of 1 and 14 weeks post term in both cross sectional and longitudinal studies. In order to produce stimuli in which luminance cues had been eliminated with an aim to eliciting a chromatic response, preliminary studies of isoluminance determination in adults and infants were undertaken using behavioural and electrophysiological techniques. The results showed close similarity between the isoluminant ratio for adults and infants and all values were close to photometric isoluminance. Pattern reversal VEPs were recorded to stimuli of a range of red/green luminance ratios and an achromatic checkerboard. No transient VEP could be elicited with an isoluminant chromatic pattern reversal stimulus from any infant less than 7 weeks post term and similarly, all infants more than 7 weeks post term showed clear chromatic VEPs. The chromatic response first appeared at that age as a major positive component (P1) of long latency. This was delayed and reduced in comparison to the achromatic response. As the infant grew older, the latency of the P1 component decreased with the appearance of N1 and N by the 10th week post term. This finding was consistent throughout all infants assessed. In a behavioural study, no infant less than 7 weeks post term demonstrated clear discrimination of the chromatic stimulus, while those infants older than 7 weeks could do so. These findings are reviewed with respect to current neural models of visual development.
Resumo:
This thesis describes a series of experimental investigations into the functional organisation of human visual cortex using neuromagnetometry.This technique combines good spatial and temporal resolution enabling identification of the location and temporal response characteristics of cortical neurones within alert humans. To activate different neuronal populations and cortical areas a range of stimuli were used, the parameters of which were selected to match the known physiological properties of primate cortical neurones. In one series of experiments the evoked magnetic response was recorded to isoluminant red/green gratings. Co-registration of signal and magnetic resonance image data indicated a contribution to the response from visual areas V1, V2 and V4. To investigate the spatio-temporal characteristics of neurones within area V1 the evoked response was recorded for a range of stimulus spatial and temporal frequencies. The response to isoluminant red/green gratings was dominated by a major component which was found to have bandpass spatial frequency tuning with a peak at 1-2 cycles/degree, falling to the level of the noise at 6-8 cycles/degree. The temporal frequency tuning characteristics of the response showed bimodal sensitivity with peaks at 0-1Hz and 4Hz. In a further series of experiments the luminance evoked response was recorded to red/black, yellow/black and achromatic gratings and in all cases was found to be more complex than the isoluminant chromatic response, comprising up to three distinct components. The major response peak showed bandpass spatial frequency tuning characteristics, peaking at 6-8 cycles/degree, falling to the level of the noise at 12-16 cycles/degree. The results provide evidence to suggest that within area V1 the same neuronal population encodes both chromatic and luminance information and has spatial frequency tuning properties consistent with single-opponent cells. Furthermore, the results indicate that cells within area V1 encode chromatic motion information over a wide range of temporal frequencies with temporal response characteristics suggestive of the existence of a sub-population of cells sensitive to high temporal frequencies.
Resumo:
The principal aim of this work was to investigate the development of the S-cone colour-opponent pathway in human infants aged 4 weeks to 6 months. This was achieved by recording transient visual evoked responses to pattern-onset stimuli along a tritanopic confusion axis (tritan stimuli) at and around the adult isoluminant match. For comparison, visual evoked responses to red-green and luminance-modulated stimuli were recorded from the same infants at the same ages. Evoked responses were also recorded from colour-normal adults for comparison with those of the infants. The transient VEP allowed observation of response morphology as luminance differences were introduced to the chromatic stimuli. In this way, an estimate of isoluminance was possible in infants. Estimated isoluminant points for a group of six infants aged 6 to 10 weeks closely approximated the adult isoluminant match. This finding has implications for the use of photometric isoluminance in infant work, and suggests that photopic spectral sensitivity is similar in infants and adults. Abnormalities of the visual evoked responses to tritan, red-green and luminance-modulated stimuli in an infant with cystic fibrosis are reported. The results suggest abnormal function of the retino-striate visual pathway in this infant, and it is argued that these may be secondary to his illness, although data from more infants with cystic fibrosis are needed to clarify this further. A group of nine healthy infants demonstrated evoked responses to tritan stimuli by 4 to 10 weeks and to red-green stimuli by 6 to 11 weeks post-term age. Responses to luminance-modulated stimuli were present in all nine infants at the earliest age tested, namely 4 weeks post-term. The slightly earlier age of onset of evoked responses to tritan stimuli than for red-green may be explained by the relatively lower cone contrast afforded by red-green stimuli. Latency of the evoked response to both types of chromatic stimuli and to luminance-modulated stimuli decreased with age at a similar rate, suggesting that the visual pathways transmitting luminance and chromatic information mature at similar rates in young infants.