945 resultados para Isolated bound-state solution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct the S-matrix for bound state (gauge-invariant) scattering for nonlinear sigma models defined on the manifold SU(n) S(U(p)⊗U(n-p)) with fermions. It is not possible to compute gauge non-singlet matrix elements. In the present language, constraints from higher conservation laws determine the bound state solution. An alternative derivation is also presented. © 1988.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Missing bound-state solutions for fermions in the background of a Cornell potential consisting of a mixed scalar-vector-pseudoscalar coupling is examined. Charge-conjugation operation, degeneracy and localization are discussed. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The homogeneous Lippmann-Schwinger integral equation is solved in momentum space by using confining potentials. Since the confining potentials are unbounded at large distances, they lead to a singularity at small momentum. In order to remove the singularity of the kernel of the integral equation, a regularized form of the potentials is used. As an application of the method, the mass spectra of heavy quarkonia, mesons consisting from heavy quark and antiquark (Υ(bb̄), ψ(cc̄)), are calculated for linear and quadratic confining potentials. The results are in good agreement with configuration space and experimental results. © 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled S-3(1), D-3(1), channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves S-1(0), P-1(1), D-1(2), and S-3(1)-D-3(1) of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. We also show that it is trivial to modify this variational principle in order to make it suitable for bound-state calculation. The bound-state approach is illustrated for the S-3(1)-D-3(1) channel of the Reid soft-core potential for calculating the deuteron binding, wave function, and the D state asymptotic parameters. (c) 1995 Academic Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonrelativistic problem of a particle immersed in a triangular potential well, set forth by N. A. Rao and B. A. Kagali, is revised. It is shown that these researchers misunderstood the full meaning of the potential and obtained a wrong quantization condition. By exploring the space inversion symmetry, this work presents the correct solution to this problem with potential applications in electronics in a simple and transparent way. © Electronic Journal of Theoretical Physics. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclin-dependent kinase (Cdk) inhibitor p21Waf1/Cip1/Sdi1, important for p53-dependent cell cycle control, mediates G1/S arrest through inhibition of Cdks and possibly through inhibition of DNA replication. Cdk inhibition requires a sequence of approximately 60 amino acids within the p21 NH2 terminus. We show, using proteolytic mapping, circular dichroism spectropolarimetry, and nuclear magnetic resonance spectroscopy, that p21 and NH2-terminal fragments that are active as Cdk inhibitors lack stable secondary or tertiary structure in the free solution state. In sharp contrast to the disordered free state, however, the p21 NH2 terminus adopts an ordered stable conformation when bound to Cdk2, as shown directly by NMR spectroscopy. We have, thus, identified a striking disorder-order transition for p21 upon binding to one of its biological targets, Cdk2. This structural transition has profound implications in light of the ability of p21 to bind and inhibit a diverse family of cyclin-Cdk complexes, including cyclin A-Cdk2, cyclin E-Cdk2, and cyclin D-Cdk4. Our findings suggest that the flexibility, or disorder, of free p21 is associated with binding diversity and offer insights into the role for structural disorder in mediating binding specificity in biological systems. Further, these observations challenge the generally accepted view of proteins that stable secondary and tertiary structure are prerequisites for biological activity and suggest that a broader view of protein structure should be considered in the context of structure-activity relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system which may be realized in a variety of plasmonic, photonic, or electronic contexts. We present the exact many-body scattering eigenstate obtained by imposing open boundary conditions. Multiphoton bound states appear in the scattering of two or more photons due to the coupling between the photons and the TLS. Such bound states are shown to have a large effect on scattering of both Fock- and coherent-state wave packets, especially in the intermediate coupling-strength regime. We compare the statistics of the transmitted light with a coherent state having the same mean photon number: as the interaction strength increases, the one-photon probability is suppressed rapidly, and the two- and three-photon probabilities are greatly enhanced due to the many-body bound states. This results in non-Poissonian light. © 2010 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The result of few-particle ground-state calculation employing a two-particle nonlocal potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unusually strong attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of pi as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states.