1000 resultados para Isolação térmica


Relevância:

100.00% 100.00%

Publicador:

Resumo:

They are in this study the experimental results of the analysis of thermal performance of composite material made from a plant matrix of polyurethane derived from castor oil of kernel of mamona (COF) and loading of clay-mineral called vermiculite expanded. Bodies of evidence in the proportions in weight of 10%, 15% and 20% were made to determine the thermal properties: conductivity (k), diffusivity (ά) and heat capacity (C), for purposes of comparison, the measurements were also performed the properties of polyurethane of castor without charge and also the oil polyurethane (PU), both already used in thermal insulation. Plates of 0.25 meters of material analyzed were manufactured for use as insulation material in a chamber performance thermal coverage. Thermocouples were distributed on the surface of the cover, and inside the material inside the test chamber and this in turn was subjected to artificial heating, consisting of a bank of incandescent lamps of 3000 w. The results obtained with the composite materials were compared with data from similar tests conducted with the camera alone with: (a) of oil PU, (b) of COF (c) glass wool, (d ) of rock wool. The heat resistance tests were performed with these composites, obtaining temperature limits for use in the range of 100 º C to 130 º C. Based on the analysis of the results of performance and thermal properties, it was possible to conclude that the COF composites with load of expanded vermiculite present behavior very close to those exhibited by commercial insulation material

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standardization of the bovine skin thickness in the leather industry generates a residue known as wet-blue . At the end of twentieth century, the brazilian industry discarded about 131 thousand tons of this residue in nature, provoking a great environmental liability. In this paper is presented the analyses of the termophysical properties, thermal and volumetric expansion performance of a composite of vegetable resin of castor oil plant (Ricinus communis) with load of industrial residue of leather "wet-blue", for application as thermal isolation material of warm surfaces. There were considered four percentile levels of residue load in the proportions in mass of 0%, 5%, 10% and 15%, added to the expansible resin of castor oil plant in two configurations: sawed leather and crushed leather in a smaller particle (powder) by grinding in a mill of balls. Twenty-one proof bodies were produced for termophysical properties analysis (three for each configuration) and four proof bodies for rehearsals of thermal acting. Analyses of thermal acting were done in test cameras. The results of the rehearsals were compared to those obtained considering the castor oil plant foam without residue addition. A small reduction of the thermal conductivity of the composite was observed in the proportion of 10% of leather residue in both configurations. Regarding thermal conductivity, calorific capacity and diffusivity, it was verified that the proposed composite showed very close values to the commercial insulating materials (glass wool, rock wool, EPS). It was still demonstrated the technical viability of the use of composite as insulating thermal for systems of low potency. The composite presented larger volumetric expansion with 15% of sawed residue of leather.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The partial fixed prosthodontics restoration is used to rehabilitate form and function of partial or total compromised teeth, having to remain permanently joined to remainder tooth. The most useful material on prosthodontics is the feldspar porcelain, commercialized as aluminosilicate powders. Dental porcelains are presented with limited mechanical properties to rehabilitate extensive spaces. The association with Ni-Cr metallic systems (metal-ceramic system) allows that the metallic substructure compensates the fragile porcelain nature, preserving the thermal insulation and aesthetics desirable, as well as reducing the possibility of cracking during matication efforts. Cohesive flaws by low mechanical strength connect the metallic substructure to the oral environment, characterized by a electrolytic solution (saliva), by aggressive temperature, pH cyclic changes and mechanical requests. This process results on ionic liberation that could promote allergic or inflammatory responses, and/or clinical degradation of ceramometal system. The aim of this study was to evaluate the presence of an intermediate titanium layer on the microscopic fracture behavior of porcelains on ceramometal systems. Plasma deposition of titanium films result in regular passivating oxide layers which act as barriers to protect the metallic substrate against the hazardous effects of corrosive saliva. Tribocorrosion tests were performed to simulate the oral environment and mechanical stress, making it possible the early detection of crack formation and growth on metal-ceramic systems, which estimate the adherence between the compounds of this system. Plain samples consisting of dental feldspar porcelain deposited either onto metallic substrates or titanium films were fired and characterized by scanning electron microscopy. The result showed that the titanium film improved the adherence of the system compared to conventional metal-ceramic interfaces, thus holding crack propagation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generation for termoeletricity is characterized as a solid process of conversion of thermal energy (heat) in electric without the necessity of mobile parts. Although the conversion process is of low efficiency the system presents high degree of trustworthiness and low requisite of maintenance and durability. Its principle is based on the studies of termogeneration carried through by Thomas Seebeck in 1800. The frank development of the technologies of solid state for termoeletricity generation, the necessity of the best exploitation of the energy, also with incentive the cogeneration processes, the reduction of the ambient impact allies to the development of modules semiconductors of high efficiency, converge to the use of the thermoeletric generation through components of solid state in remote applications. The work presents the development, construction and performance evaluation of an prototype, in pilot scale, for energy tri-generation aiming at application in remote areas. The unit is composed of a gas lamp as primary source of energy, a module commercial semiconductor for thermoelectric generation and a shirt for production of the luminosity. The project of the device made compatible a headstock for adaptation in the gas lamp, a hot source for adaptation of the module, an exchanger of to be used heat as cold source and to compose first stage of cogeneration, an exchanger of tubular heat to compose second stage of cogeneration, the elaboration of a converter dc-dc type push pull, adequacy of a system of acquisition of temperature. It was become fullfilled assembly of the prototype in group of benches for tests and assay in the full load condition in order to evaluate its efficiency, had been carried through energy balance of the unit. The prototype presented an electric efficiency of 0,73%, thermal of 56,55%, illumination of 1,35% and global of 58,62%. The developed prototype, as the adopted methodology of assay had also taken care of to the considered objectives, making possible the attainment of conclusive results concerning to the experiment. Optimization in the system of setting of the semicondutor module, improvement in the thermal insulation and design of the prototype and system of protection to the user are suggestions to become it a commercial product

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decades there was a significant increasing of the numbers of researchers that joint efforts to find alternatives to improve the development of low environmental impact technology. Materials based on renewable resources have enormous potentials of applications and are seen as alternatives for the sustainable development. Within other parameters, the sustainability depends on the energetic efficiency, which depends on the thermal insulation. Alternative materials, including vegetal fibers, can be applied to thermal insulation, where its first goal is to minimize the loss of energy. In the present research, it was experimentally analyzed the thermal behavior of fiber blankets of sisal (Agave sisalana) with and without surface treatment with oxide hidroxide (NaOH). Blankets with two densities (1100/1200 and 1300/1400 g/m2) were submitted to three rates of heat transfer (22.5 W, 40 W and 62.5 W). The analysis of the results allowed comparing the blankets treated and untreated in each situation. Others experiments were carried out to obtain the thermal conductivity (k), heat capacity (C) and the thermal diffusivity (α) of the blankets. Thermo gravimetric analyses were made to the verification of the thermal stability. Based on the results it was possible to relate qualitatively the effect of the heat transfer through the sisal blankets subjected to three heat transfer rates, corresponding to three temperature values (77 °C, 112 °C e 155 °C). To the first and second values of temperature it was verified a considerable reduction on the rate of heat transfer; nevertheless, to the third value of temperature, the surface of the blankets (treated and untreated) in contact with the heated surface of the tube were carbonized. It was also verified, through the analyses of the results of the measurements of k, C e α, that the blankets treated and untreated have values near to the conventional isolating materials, as glass wool and rock wool. It could be concluded that is technically possible the use of sisal blankets as constitutive material of thermal isolation systems in applications where the temperature do not reach values greater than 112 ºC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New materials made from industrial wastes have been studied as an alternative to traditional fabrication processes in building and civil engineering. These materials are produced considering some issues like: cost, efficiency and reduction of nvironmental damage. Specifically in cases of materials destined to dwellings in low latitude regions, like Brazilian Northeast, efficiency is related to mechanical and thermal resistance. Thus, when thermal insulation and energetic efficiency are aimed, it s important to increase thermal resistance without depletion of mechanical properties. This research was conducted on a construction element made of two plates of cement mortar, interspersed with a plate of recycled expanded polystyrene (EPS). This component, widely known as sandwich-panel, is commonly manufactured with commercial EPS whose substitution was proposed in this study. For this purpose it was applied a detailed methodology that defines parameters to a rational batching of the elements that constitute the nucleus. Samples of recycled EPS were made in two different values of apparent specific mass (ρ = 65 kg/m³; ρ = 130 kg/m³) and submitted to the Quick-Line 30TM that is a thermophysical properties analyzer. Based on the results of thermal conductivity, thermal capacity and thermal diffusivity obtained, it was possible to assure that recycled EPS has thermal insulation characteristics that qualify it to replace commercial EPS in building and civil engineering industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes the development of an innovative material made from a vegetable polyurethane matrix and load of industrial waste, from retread tires, for thermal insulation and environmental comfort. Experimental procedures are presented, as well as the results of the thermal and acoustic performance of this composite material, made from an expansive foam derived from the castor seed oil and fiber of scrap tires. The residue was treated superficially with sodium hydroxide, to eliminate contaminants, and characterized macroscopically and microscopically. Samples were produced with addition of residues at levels of 5%, 10%, 15% and 20% by weight, for determination of thermal properties: conductivity, heat capacity and thermal diffusivity, sound absortion index and density. The results were compared to commercially available thermal insulation and sound absorbing products. According to the analysis of results, it was concluded that the developed composite presents characteristics that qualify it as a thermal insulation with superior performance, compared to commercial available insulation, and sound absorption capacity greater than the castor oil polyurethane s, without addition of the residue

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A aplicação de isolantes térmicos em sistemas construtivos promove vantagens com vistas ao conforto térmico de ambientes. E com isso, o aumento da produtividade em locais de trabalho, a sensação de bem-estar e a diminuição dos custos com climatização. A demanda por conforto ambiental, no âmbito da isolação térmica, somada ao advento de novas leis que regulam os requisitos mínimos de conforto, as exigências dos consumidores pela adoção de métodos de produção mais “limpos”, a fiscalização quanto à destinação de resíduos industriais, além da inserção de produtos no mercado com apelos ambientais, incentivaram o desenvolvimento da presente pesquisa. O presente trabalho trata da aplicação do poliuretano, visando comparar o desempenho térmico do derivado de origem vegetal (óleo de mamona) com adição de resíduo plástico termofixo em diferentes proporções (5%, 10%, 15% e 20%), com o poliuretano petrolífero, a lã de vidro e a lã de rocha através da análise de suas propriedades térmicas (condutividade térmica – k, difusividade térmica – e capacidade calorífica – Cp). . Após a realização dos ensaios, os compósitos estudados foram moídos e reutilizados como carga para novos compósitos. Com base nos resultados dos ensaios de propriedades térmicas, constatou-se que o material desenvolvido conduz menos calor que o poliuretano de petróleo, a lã de vidro e a lã de rocha, além de oferecer alta inércia térmica, bom desempenho térmico e baixo custo. Assim como foi comprovada a possibilidade de fabricação de novos compósitos para fins de isolamento, reutilizando os compósitos testados

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demand for environmental comfort in construction systems within the insulation and thermal comfort, plus the advent of new laws regulating the minimum requirements of comfort, disposal of solid industrial waste, construction waste, the requirements of consumers by adopting construction methods "cleaner", encouraged the development of this work. Aims technologically characterize the composite proposed in three types of samples (10%, 30% and 50% of thermoset plastic industrial waste) and raw materials: gypsum waste, cement and plastic thermosetting industrial waste in order to produce the composite with properties of thermal insulation: conductivity, thermal diffusivity, specific heat and resistivity. The physical, structural and morphological properties of the raw materials were investigated by thermogravimetry analysis (TG / DSC), X-ray diffraction (DRX), X-ray fluorescence (FXR) and scanning electron microscopy (MEV). Obtaining mechanical properties through the compression strength test. The analysis results indicate characteristics suitable for cement matrix composite production with the addition of thermosetting plastic industrial waste and gypsum waste, with potential application of these materials in composites with properties of thermal insulation. Finally, assessing what proportion showed up with better performance. Considering the analysis and testing carried out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demand for environmental comfort in construction systems within the insulation and thermal comfort, plus the advent of new laws regulating the minimum requirements of comfort, disposal of solid industrial waste, construction waste, the requirements of consumers by adopting construction methods "cleaner", encouraged the development of this work. Aims technologically characterize the composite proposed in three types of samples (10%, 30% and 50% of thermoset plastic industrial waste) and raw materials: gypsum waste, cement and plastic thermosetting industrial waste in order to produce the composite with properties of thermal insulation: conductivity, thermal diffusivity, specific heat and resistivity. The physical, structural and morphological properties of the raw materials were investigated by thermogravimetry analysis (TG / DSC), X-ray diffraction (DRX), X-ray fluorescence (FXR) and scanning electron microscopy (MEV). Obtaining mechanical properties through the compression strength test. The analysis results indicate characteristics suitable for cement matrix composite production with the addition of thermosetting plastic industrial waste and gypsum waste, with potential application of these materials in composites with properties of thermal insulation. Finally, assessing what proportion showed up with better performance. Considering the analysis and testing carried out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The partial fixed prosthodontics restoration is used to rehabilitate form and function of partial or total compromised teeth, having to remain permanently joined to remainder tooth. The most useful material on prosthodontics is the feldspar porcelain, commercialized as aluminosilicate powders. Dental porcelains are presented with limited mechanical properties to rehabilitate extensive spaces. The association with Ni-Cr metallic systems (metal-ceramic system) allows that the metallic substructure compensates the fragile porcelain nature, preserving the thermal insulation and aesthetics desirable, as well as reducing the possibility of cracking during matication efforts. Cohesive flaws by low mechanical strength connect the metallic substructure to the oral environment, characterized by a electrolytic solution (saliva), by aggressive temperature, pH cyclic changes and mechanical requests. This process results on ionic liberation that could promote allergic or inflammatory responses, and/or clinical degradation of ceramometal system. The aim of this study was to evaluate the presence of an intermediate titanium layer on the microscopic fracture behavior of porcelains on ceramometal systems. Plasma deposition of titanium films result in regular passivating oxide layers which act as barriers to protect the metallic substrate against the hazardous effects of corrosive saliva. Tribocorrosion tests were performed to simulate the oral environment and mechanical stress, making it possible the early detection of crack formation and growth on metal-ceramic systems, which estimate the adherence between the compounds of this system. Plain samples consisting of dental feldspar porcelain deposited either onto metallic substrates or titanium films were fired and characterized by scanning electron microscopy. The result showed that the titanium film improved the adherence of the system compared to conventional metal-ceramic interfaces, thus holding crack propagation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Espectroscopia de Transientes de Níveis Profundos (DLTS – Deep Level Transient Spectroscopy) foi, detalhadamente, descrita e analisada. O processo de isolação por implantação em GaAs foi estudado. Sua dependência com a sub-rede, do As ou do Ga, em que o dopante é ativado foi investigada para material tipo-p. Semelhantes doses de implantação de prótons foram necessárias para se tornar semi-isolantes camadas de GaAs dopadas com C ou com Mg possuindo a mesma concentração de pico de lacunas livres. A estabilidade térmica da isolação nestas amostras foi medida. Diferenças no comportamento de recozimento destas apontaram a formação, provavelmente durante a referida etapa térmica, de uma estrutura diferente de defeitos em cada caso. Medidas de DLTS foram realizadas em amostras de GaAs tipo-n e tipo-p implantadas com prótons de 600 keV. A estrutura de picos observada apresentou, além de boa parte dos defeitos introduzidos para o caso de irradiação com elétrons, defeitos mais complexos. Um novo nível, com energia superior em ~0,64 eV ao valor correspondente ao topo da banda de valência, foi identificado nos espectros medidos em material tipo-p. A variação da concentração dos centros de captura introduzidos com diferentes etapas de recozimento foi estudada e comparada com o comportamento previamente observado para a resistência de folha em camadas de GaAs implantadas com prótons. Simulações foram feitas, indicando que a interpretação adotada anteriormente, associando o processo de isolação diretamente à formação de defeitos relacionados a anti-sítios, pode não estar completa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O transformador de potência é um importante equipamento utilizado no sistema elétrico de potência, responsável por transmitir energia elétrica ou potência elétrica de um circuito a outro e transformar tensões e correntes de um circuito elétrico. O transformador de potência tem ampla aplicação, podendo ser utilizado em subestações de usinas de geração, transmissão e distribuição. Neste sentido, mudanças recentes ocorridas no sistema elétrico brasileiro, causadas principalmente pelo aumento considerável de carga e pelo desenvolvimento tecnológico tem proporcionado a fabricação de um transformador com a aplicação de alta tecnologia, aumentando a confiabilidade deste equipamento e, em paralelo, a redução do seu custo global. Tradicionalmente, os transformadores são fabricados com um sistema de isolação que associa isolantes sólidos e celulose, ambos, imersos em óleo mineral isolante, constituição esta que define um limite à temperatura operacional contínua. No entanto, ao se substituir este sistema de isolação formado por papel celulose e óleo mineral isolante por um sistema de isolação semi- híbrida - aplicação de papel NOMEX e óleo vegetal isolante, a capacidade de carga do transformador pode ser aumentada por suportar maiores temperaturas. Desta forma, o envelhecimento do sistema de isolação poderá ser em longo prazo, significativamente reduzido. Esta técnica de aumentar os limites térmicos do transformador pode eliminar, essencialmente, as restrições térmicas associadas à isolação celulósica, provendo uma solução econômica para aperfeiçoar o uso de transformadores de potência, aumentando a sua confiabilidade operacional. Adicionalmente, à aplicação de sensores de fibra óptica, em substituição aos sensores de imagem térmica no monitoramento das temperaturas internas do transformador, se apresentam como importante opção na definição do equacionamento do comportamento do transformador sob o ponto de vista térmico.