982 resultados para Islet-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in th

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae are major health problems worldwide, both found in symptomless carriage but also causing even life-threatening infections. The aim of this thesis was to characterise MRSA and S. pneumoniae in detail by using several molecular typing methods for various epidemiological purposes: clonality analysis, epidemiological surveillance, outbreak investigation, and virulence factor analysis. The characteristics of MRSA isolates from the strain collection of the Finnish National Infectious Disease Register (NIDR) and pneumococcal isolates collected from military recruits and children with acute otitis media (AOM) were analysed using various typing techniques. Antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and the detection of Panton-Valentine leukocidin (PVL) genes were performed for MRSA isolates. Pneumococcal isolates were analysed using antimicrobial susceptibility testing, serotyping, MLST, and by detecting pilus islet 1 (PI-1) and 2 (PI-2) genes. Several international community- and hospital-associated MRSA clones were recognised in Finland. The genetic diversity among MRSA FIN-4 isolates and among FIN-16 isolates was low. Overall, MRSA blood isolates from 1997 to 2006 were genetically diverse. spa typing was found to be a highly discriminatory, rapid and accurate typing method and it also qualifies as the primary typing method in countries with a long history of PFGE-based MRSA strain nomenclature. However, additional typing by another method, e.g. PFGE, is needed in certain situations to be able to provide adequate discrimination for epidemiological surveillance and outbreak investigation. An outbreak of pneumonia was associated with one pneumococcal strain among military recruits, previously healthy young men living in a crowded setting. The pneumococcal carriage rate after the outbreak was found to be exceptionally high. PI-1 genes were detected at a rather low prevalence among pneumococcal isolates from children with AOM. However, the study demonstrated that PI-1 has existed among pneumococcal isolates prior to pneumococcal conjugate vaccine and the increased antimicrobial resistance era. Moreover, PI-1 was found to associate with the serotype rather than the genotype. This study adds to our understanding of the molecular epidemiology of MRSA strains in Finland and the importance of an appropriate genotyping method to be able to perform high-level laboratory-based surveillance of MRSA. Epidemiological and molecular analyses of S. pneumoniae add to our knowledge of the characteristics of pneumococcal strains in Finland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

叶酸是B族维生素的一员,参与体内一系列重要的生命过程包括DNA,氨基酸的合成,调控细胞周期,参与一碳单位供体循环,调节DNA,蛋白质甲基化等。叶酸的许多功能都和叶酸结合蛋白有关,体内有多种跨膜形式的叶酸结合蛋白,比如Folbp1,RFC,HCP等。以前的研究表明这些不同的叶酸结合蛋白具有不同的功能。分泌型叶酸结合蛋白是另外一类叶酸结合蛋白,在人类,小鼠,猪中都有序列报道,但是其功能却知之甚少。 我们在非洲爪蛙中鉴定出一个全新的分泌型叶酸结合蛋白并命名为Secreted Folate Binding Protein(sFBP)。在胚胎和转染细胞系中我们都证明该蛋白是分泌性的,表面等离子共振实验发现sFBP能够结合叶酸。在胚胎早期这个基因表达于粘液腺和神经板区域,神经管闭合后在神经管、粘液腺、眼睛,头部以及鳃弓都有表达。特异morpholino 阻断sFBP翻译后发现粘液腺发育异常,神经管闭合缺陷,前后体轴聚集延伸运动受到抑制,尾芽期胚胎表现出体轴缩短,无眼,小头或无头的表型。进一步研究发现显微注射sFBP morpholino 的胚胎神经板区域细胞发生凋亡,中胚层和神经外胚层的一系列粘附分子表达异常,神经细胞的正常分化也受到抑制。通过显微移植实验我们还发现抑制sFBP的翻译后,神经嵴细胞的正常分化和迁移都受到抑制。但是,显微注射叶酸及其类似物或者显微注射甲基供体S-腺苷甲硫氨酸或者亮氨酸甲基转移酶都不能挽救阻断sFBP造成的表形,由此提示sFBP可能不是通过叶酸传统的参与营养合成或者甲基化的途径发挥作用。我们发现注射sFBP morpholino可以抑制Islet-1mRNA和蛋白质的表达,Islet-1的表达区域与sFBP类似。共同注射Islet-1 mRNA和sFBP morpholino可以极大的挽救sFBP morpholino的表型。最后通过morpholino特异阻断Islet-1的表达后,我们发现其表现出与sFBP morpholino类似的粘液腺发育缺陷,神经板细胞凋亡,小头无眼的表形。由此叶酸是B族维生素的一员,参与体内一系列重要的生命过程包括DNA,氨基酸的合成,调控细胞周期,参与一碳单位供体循环,调节DNA,蛋白质甲基化等。叶酸的许多功能都和叶酸结合蛋白有关,体内有多种跨膜形式的叶酸结合蛋白,比如Folbp1,RFC,HCP等。以前的研究表明这些不同的叶酸结合蛋白具有不同的功能。分泌型叶酸结合蛋白是另外一类叶酸结合蛋白,在人类,小鼠,猪中都有序列报道,但是其功能却知之甚少。 我们在非洲爪蛙中鉴定出一个全新的分泌型叶酸结合蛋白并命名为Secreted Folate Binding Protein(sFBP)。在胚胎和转染细胞系中我们都证明该蛋白是分泌性的,表面等离子共振实验发现sFBP能够结合叶酸。在胚胎早期这个基因表达于粘液腺和神经板区域,神经管闭合后在神经管、粘液腺、眼睛,头部以及鳃弓都有表达。特异morpholino 阻断sFBP翻译后发现粘液腺发育异常,神经管闭合缺陷,前后体轴聚集延伸运动受到抑制,尾芽期胚胎表现出体轴缩短,无眼,小头或无头的表型。进一步研究发现显微注射sFBP morpholino 的胚胎神经板区域细胞发生凋亡,中胚层和神经外胚层的一系列粘附分子表达异常,神经细胞的正常分化也受到抑制。通过显微移植实验我们还发现抑制sFBP的翻译后,神经嵴细胞的正常分化和迁移都受到抑制。但是,显微注射叶酸及其类似物或者显微注射甲基供体S-腺苷甲硫氨酸或者亮氨酸甲基转移酶都不能挽救阻断sFBP造成的表形,由此提示sFBP可能不是通过叶酸传统的参与营养合成或者甲基化的途径发挥作用。我们发现注射sFBP morpholino可以抑制Islet-1mRNA和蛋白质的表达,Islet-1的表达区域与sFBP类似。共同注射Islet-1 mRNA和sFBP morpholino可以极大的挽救sFBP morpholino的表型。最后通过morpholino特异阻断Islet-1的表达后,我们发现其表现出与sFBP morpholino类似的粘液腺发育缺陷,神经板细胞凋亡,小头无眼的表形。由此我们认为sFBP结合叶酸后可能通过细胞膜上的受体传递信号,并且Islet-1可能在sFBP的下游发挥作用。 神经嵴是脊椎动物特有的一群多潜能干细胞,产生于表皮和神经板的边界,在原肠运动之后这群细胞通过表皮间充值转换从神经管背侧迁移到不同的区域,分化成不同的细胞类型,包括外周神经系统,色素细胞,软骨等。神经嵴的发生是一个多步骤多基因参与的精细调控过程。目前理论认为最初由一些分泌性信号分子又叫形态生成素比如BMP,Wnt,FGF,Notch等通过不同浓度梯度的相互作用调节一组在表皮和神经板边界的转录因子(Msx、Pax3/7、Zic1、Dlx3/5等)的表达,即边界决定。这些边界决定因子进一步在预定形成神经嵴的区域激活神经嵴特化基因比如Slug/Snail、FoxD3、Twist、Sox9/10的表达完成神经嵴的特化(Specification)。 Nkx6.3是Nkx6家族的一个转录因子,RT-PCR显示其呈现母源性表达。特异抗体显示Nkx6.3蛋白第9期在整个胚胎都表达,大部分蛋白集中在细胞核,有少部分蛋白定位于细胞膜上;神经板时期主要定位于神经嵴区域的细胞膜上。过表达Nkx6.3会影响细胞粘连分子的表达,由此干扰正常的胚胎原肠运动和Activin诱导的动物帽聚集延伸运动。显微注射Nkx6.3特异morpholino阻断其蛋白表达会抑制神经嵴的marker基因Wnt8,Fgf8,Pax3,Msx1,Zic1,FoxD3,Slug的转录,阻碍神经嵴的发育。在动物帽中单独注射Nkx6.3可以在mRNA水平上诱导Wnt8、Fgf8另一方面抑制BMP4的表达进而诱导神经嵴基因Pax3,Zic1,Slug的表达。报告基因实验也显示Nkx6.3能够激活Wnt信号而在动物帽中抑制BMP信号。Nkx6.3蛋白功能域分析发现其EH1结构域(domain)参与对Wnt8信号的激活,而EH1结构域和HD结构域之间的连接区域(linker domain)参与对FGF的激活和对BMP的抑制。进一步在动物帽和胚胎中分析发现Nkx6.3对Wnt8的激活依赖于FGF家族受体信号但是不依赖于Fgf8。有趣的是4细胞时期过表达Nkx6.3促进Fgf8和Wnt8 mRNA表达,但是抑制边界决定基因Msx1、Pax3和神经嵴特化基因Slug的转录。在32细胞时期显微注射Nkx6.3可以在内源神经嵴发生区域抑制Slug的表达,而异位却诱导Slug的mRNA。我们发现与动物帽中对BMP的调节不同,在胚胎中,过表达Nkx6.3会强烈的激活Smad1蛋白在细胞核中的表达即BMP信号被激活,高的BMP信号会抑制神经嵴的发生。另外我们发现过表达Nkx6.3在胚胎中抑制Dlx5而在动物帽中却不影响Dlx5的表达水平,Morpholino阻断Dlx5会抑制Msx1、Pax3和Slug的表达。BMP信号和Dlx5在动物帽和在整体胚胎中对Nkx6.3的不同响应可以一定程度上解释过表达Nkx6.3在2个系统中对神经嵴基因Slug相反的影响结果。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Streptococcus pneumoniae is an important life threatening human pathogen causing agent of invasive diseases such as otitis media, pneumonia, sepsis and meningitis, but is also a common inhabitant of the respiratory tract of children and healthy adults. Likewise most streptococci, S. pneumoniae decorates its surface with adhesive pili, composed of covalently linked subunits and involved in the attachment to epithelial cells and virulence. The pneumococcal pili are encoded by two genomic regions, pilus islet 1 (PI-1), and pilus islet-2 (PI-2), which are present in about 30% and 16% of the pneumococcal strains, respectively. PI-1 exists in three clonally related variants, whereas PI-2 is highly conserved. The presence of the islets does not correlate with the serotype of the strains, but with the genotype (as determined by Multi Locus Sequence Typing). The prevalence of PI-1 and PI-2 positive strains is similar in isolates from invasive disease and carriage. To better dissect a possible association between PIs presence and disease we evaluated the distribution of the two PIs in a panel of 113 acute otitis media (AOM) clinical isolates from Israel. PI-1 was present in 30.1% (N=34) of the isolates tested, and PI-2 in 7% (N=8). We found that 50% of the PI-1 positive isolates belonged to the international clones Spain9V-3 (ST156) and Taiwan19F-14 (ST236), and that PI-2 was not present in the absence of Pl-1. In conclusion, there was no correlation between PIs presence and AOM, and, in general, the observed differences in PIs prevalence are strictly dependent upon regional differences in the distribution of the clones. Finally, in the AOM collection the prevalence of PI-1 was higher among antibiotic resistant isolates, confirming previous indications obtained by the in silico analysis of the MLST database collection. Since the pilus-1 subunits were shown to confer protection in mouse models of infection both in active and passive immunization studies, and were regarded as potential candidates for a new generation of protein-based vaccines, the functional characterization was mainly focused on S. pneumoniae pilus -1 components. The pneumococcal pilus-1 is composed of three subunits, RrgA, RrgB and RrgC, each stabilized by intra-molecular isopeptide bonds and covalently polymerized by means of inter-molecular isopeptide bonds to form an extended fibre. The pilus shaft is a multimeric structure mainly composed by the RrgB backbone subunit. The minor ancillary proteins are located at the tip and at the base of the pilus, where they have been proposed to act as the major adhesin (RrgA) and as the pilus anchor (RrgC), respectively. RrgA is protective in in vivo mouse models, and exists in two variants (clades I and II). Mapping of the sequence variability onto the RrgA structure predicted from X-ray data showed that the diversity was restricted to the “head” of the protein, which contains the putative binding domains, whereas the elongated “stalk” was mostly conserved. To investigate whether this variability could influence the adhesive capacity of RrgA and to map the regions important for binding, two full-length protein variants and three recombinant RrgA portions were tested for adhesion to lung epithelial cells and to purified extracellular matrix (ECM) components. The two RrgA variants displayed similar binding abilities, whereas none of the recombinant fragments adhered at levels comparable to those of the full-length protein, suggesting that proper folding and structural arrangement are crucial to retain protein functionality. Furthermore, the two RrgA variants were shown to be cross-reactive in vitro and cross-protective in vivo in a murine model of passive immunization. Taken together, these data indicate that the region implicated in adhesion and the functional epitopes responsible for the protective ability of RrgA may be conserved and that the considerable level of variation found within the “head” domain of RrgA may have been generated by immunologic pressure without impairing the functional integrity of the pilus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We recently identified the transcription factor (TF) islet 1 gene product (ISL1) as a marker for well-differentiated pancreatic neuroendocrine tumors (P-NETs). In order to better understand the expression of the four TFs, ISL1, pancreatico-duodenal homeobox 1 gene product (PDX1), neurogenin 3 gene product (NGN3), and CDX-2 homeobox gene product (CDX2), that mainly govern the development and differentiation of the pancreas and duodenum, we studied their expression in hormonally defined P-NETs and duodenal (D-) NETs. Thirty-six P-NETs and 14 D-NETs were immunostained with antibodies against the four pancreatic hormones, gastrin, serotonin, calcitonin, ISL1, PDX1, NGN3, and CDX2. The TF expression pattern of each case was correlated with the tumor's hormonal profile. Insulin-positive NETs expressed only ISL1 (10/10) and PDX1 (9/10). Glucagon-positive tumors expressed ISL1 (7/7) and were almost negative for the other TFs. Gastrin-positive NETs, whether of duodenal or pancreatic origin, frequently expressed PDX1 (17/18), ISL1 (14/18), and NGN3 (14/18). CDX2 was mainly found in the gastrin-positive P-NETs (5/8) and rarely in the D-NETs (1/10). Somatostatin-positive NETs, whether duodenal or pancreatic in origin, expressed ISL1 (9/9), PDX1 (3/9), and NGN3 (3/9). The remaining tumors showed labeling for ISL1 in addition to NGN3. There was no association between a particular TF pattern and NET features such as grade, size, location, presence of metastases, and functional activity. We conclude from our data that there is a correlation between TF expression patterns and certain hormonally defined P-NET and D-NET types, suggesting that most of the tumor types originate from embryologically determined precursor cells. The observed TF signatures do not allow us to distinguish P-NETs from D-NETs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human insulin gene enhancer-binding protein islet-1 (ISL1) is a transcription factor involved in the differentiation of the neuroendocrine pancreatic cells. Recent studies identified ISL1 as a marker for pancreatic well-differentiated neuroendocrine neoplasms. However, little is known about ISL1 expression in pancreatic poorly differentiated and in extrapancreatic well and poorly differentiated neuroendocrine neoplasms. We studied the immunohistochemical expression of ISL1 in 124 neuroendocrine neoplasms. Among pancreatic neuroendocrine neoplasms, 12/13 with poor differentiation were negative, whereas 5/7 with good differentiation but a Ki67 >20% were positive. In extrapancreatic neuroendocrine neoplasms, strong positivity was found in Merkel cell carcinomas (25/25), pulmonary small cell neuroendocrine carcinomas (21/23), medullary thyroid carcinomas (9/9), paragangliomas/pheochromocytomas (6/6), adrenal neuroblastomas (8/8) and head and neck neuroendocrine carcinomas (4/5), whereas no or only weak staining was recorded in pulmonary carcinoids (3/15), olfactory neuroblastomas (1/4) and basaloid head and neck squamous cell carcinomas (0/15). ISL1 stained the neuroendocrine carcinoma component of 5/8 composite carcinomas and also normal neuroendocrine cells in the thyroid, adrenal medulla, stomach and colorectum. Poorly differentiated neuroendocrine neoplasms, regardless of their ISL1 expression, were usually TP53 positive. Our results show the almost ubiquitous expression of ISL1 in extrapancreatic poorly differentiated neuroendocrine neoplasms and neuroblastic malignancies and its common loss in pancreatic poorly differentiated neuroendocrine neoplasms. These findings modify the role of ISL1 as a marker for pancreatic neuroendocrine neoplasms and suggest that ISL1 has a broader involvement in differentiation and growth of neuroendocrine neoplasms than has so far been assumed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

LIM domain-containing transcription factors, including the LIM-only rhombotins and LIM-homeodomain proteins, are crucial for cell fate determination of erythroid and neuronal lineages. The zinc-binding LIM domains mediate protein-protein interactions, and interactions between nuclear LIM proteins and transcription factors with restricted expression patterns have been demonstrated. We have isolated a novel protein, nuclear LIM interactor (NLI), that specifically associates with a single LIM domain in all nuclear LIM proteins tested. NLI is expressed in the nuclei of diverse neuronal cell types and is coexpressed with a target interactor islet-1 (Isl1) during the initial stages of motor neuron differentiation, suggesting the mutual involvement of these proteins in the differentiation process. The broad range of interactions between NLI and LIM-containing transcription factors suggests the utilization of a common mechanism to impart unique cell fate instructions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London) 371, 606-609]. In adults, IPF1 expression is restricted to the beta-cells in the islets of Langerhans. We report here that IPF1 induces expression of a subset of beta-cell-specific genes (insulin and islet amyloid polypeptide) when ectopically expressed in clones of transformed pancreatic islet alpha-cells. In contrast, expression of IPF1 in rat embryo fibroblasts factor failed to induce insulin and islet amyloid polypeptide expression. This is most likely due to the lack of at least one other essential insulin gene transcription factor, the basic helix-loop-helix protein Beta 2/NeuroD, which is expressed in both alpha- and beta-cells. We conclude that IPF1 is a potent transcriptional activator of endogenous insulin genes in non-beta islet cells, which suggests an important role of IPF1 in beta-cell maturation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been reported that the inositol 1,4,5-trisphosphate receptor subtype 3 is expressed in islet cells and is localized to both insulin and somatostatin granules [Blondel, O., Moody, M. M., Depaoli, A. M., Sharp, A. H., Ross, C. A., Swift, H. & Bell, G. I. (1994) Proc. Natl. Acad. Sci. USA 91, 7777-7781]. This subcellular localization was based on electron microscope immunocytochemistry using antibodies (affinity-purified polyclonal antiserum AB3) directed to a 15-residue peptide of rat inositol trisphosphate receptor subtype 3. We now show that these antibodies cross-react with rat, but not human, insulin. Accordingly, the anti-inositol trisphosphate receptor subtype 3 (AB3) antibodies label electron dense cores of mature (insulin-rich) granules of rat pancreatic beta cells, and rat granule labeling was blocked by preabsorption of the AB3 antibodies with rat insulin. The immunostaining of immature, Golgi-associated proinsulin-rich granules with AB3 antibodies was very weak, indicating that cross-reactivity is limited to the hormone and not its precursor. Also, the AB3 antibodies labeled pure rat insulin crystals grown in vitro but failed to stain crystals grown from pure human insulin. By immunoprecipitation, the antibodies similarly displayed a higher affinity for rat than for human insulin. We could not confirm the labeling of somatostatin granules using AB3 antibodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isolation of islets by collagenase digestion can cause damage and impact the efficiency of islet engraftment and function. In this study, we assessed the basement membranes (BMs) of mouse pancreatic islets as a molecular biomarker for islet integrity, damage after isolation, and islet repair in vitro as well as in the absence or presence of an immune response after transplantation. Immunofluorescence staining of BM matrix proteins and the endothelial cell marker platelet endothelial cell adhesion molecule-1 (PECAM-1) was performed on pancreatic islets in situ, isolated islets, islets cultured for 4 days, and islet grafts at 3-10 days posttransplantation. Flow cytometry was used to investigate the expression of BM matrix proteins in isolated islet β-cells. The islet BM, consisting of collagen type IV and components of Engelbreth-Holm-Swarm (EHS) tumor laminin 111, laminin α2, nidogen-2, and perlecan in pancreatic islets in situ, was completely lost during islet isolation. It was not reestablished during culture for 4 days. Peri- and intraislet BM restoration was identified after islet isotransplantation and coincided with the migration pattern of PECAM-1(+) vascular endothelial cells (VECs). After islet allotransplantation, the restoration of VEC-derived peri-islet BMs was initiated but did not lead to the formation of the intraislet vasculature. Instead, an abnormally enlarged peri-islet vasculature developed, coinciding with islet allograft rejection. The islet BM is a sensitive biomarker of islet damage resulting from enzymatic isolation and of islet repair after transplantation. After transplantation, remodeling of both peri- and intraislet BMs restores β-cell-matrix attachment, a recognized requirement for β-cell survival, for isografts but not for allografts. Preventing isolation-induced islet BM damage would be expected to preserve the intrinsic barrier function of islet BMs, thereby influencing both the effector mechanisms required for allograft rejection and the antirejection strategies needed for allograft survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of host immunity on outcome in nonsmall cell lung cancer (NSCLC) is controversial. We examined the relationship between lymphoid infiltration patterns in NSCLC and prognosis. Tumour- and stroma-infiltrating CD3+, CD8+ and forkhead box P3 (Foxp3)+ T-lymphocytes were identified using immunohistochemistry and a novel image analysis algorithm to assess total, cytotoxic and regulatory T-lymphocyte counts, respectively, in 196 NSCLC cases. The median cell count was selected as a cut-point to define patient subgroups and the ratio of the corresponding tumour islet:stroma (TI/S) counts was determined. There was a positive association between overall survival and increased CD8+ TI/S ratio (hazard ratio (HR) for death 0.44, p<0.001) but an inverse relationship between Foxp3+ TI/S ratio and overall survival (HR 4.86, p<0.001). Patients with high CD8+ islet (HR 0.48, p<0.001) and Foxp3+ stromal (HR 0.23, p<0.001) counts had better survival, whereas high CD3+ and CD8+ stromal counts and high Foxp3+ islet infiltration conferred a worse survival (HR 1.55, 2.19 and 3.14, respectively). By multivariate analysis, a high CD8+ TI/S ratio conferred an improved survival (HR 0.48, p=0.002) but a high Foxp3+ TI/S ratio was associated with worse survival (HR 3.91, p<0.001). Microlocalisation of infiltrating T-lymphocytes is a powerful predictor of outcome in resected NSCLC.