951 resultados para Islands of the heat


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent theoretical model developed by Imparato et al. Phys of the experimentally measured heat and work effects produced by the thermal fluctuations of single micron-sized polystyrene beads in stationary and moving optical traps has proved to be quite successful in rationalizing the observed experimental data. The model, based on the overdamped Brownian dynamics of a particle in a harmonic potential that moves at a constant speed under a time-dependent force, is used to obtain an approximate expression for the distribution of the heat dissipated by the particle at long times. In this paper, we generalize the above model to consider particle dynamics in the presence of colored noise, without passing to the overdamped limit, as a way of modeling experimental situations in which the fluctuations of the medium exhibit long-lived temporal correlations, of the kind characteristic of polymeric solutions, for instance, or of similar viscoelastic fluids. Although we have not been able to find an expression for the heat distribution itself, we do obtain exact expressions for its mean and variance, both for the static and for the moving trap cases. These moments are valid for arbitrary times and they also hold in the inertial regime, but they reduce exactly to the results of Imparato et al. in appropriate limits. DOI: 10.1103/PhysRevE.80.011118 PACS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using path integrals, we derive an exact expression-valid at all times t-for the distribution P(Q,t) of the heat fluctuations Q of a Brownian particle trapped in a stationary harmonic well. We find that P(Q, t) can be expressed in terms of a modified Bessel function of zeroth order that in the limit t > infinity exactly recovers the heat distribution function obtained recently by Imparato et al. Phys. Rev. E 76, 050101(R) (2007)] from the approximate solution to a Fokker-Planck equation. This long-time result is in very good agreement with experimental measurements carried out by the same group on the heat effects produced by single micron-sized polystyrene beads in a stationary optical trap. An earlier exact calculation of the heat distribution function of a trapped particle moving at a constant speed v was carried out by van Zon and Cohen Phys. Rev. E 69, 056121 (2004)]; however, this calculation does not provide an expression for P(Q, t) itself, but only its Fourier transform (which cannot be analytically inverted), nor can it be used to obtain P(Q, t) for the case v=0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents an experimental investigation of the axisymmetric heat transfer from a small scale fire and resulting buoyant plume to a horizontal, unobstructed ceiling during the initial stages of development. A propane-air burner yielding a heat source strength between 1.0 kW and 1.6 kW was used to simulate the fire, and measurements proved that this heat source did satisfactorily represent a source of buoyancy only. The ceiling consisted of a 1/16" steel plate of 0.91 m. diameter, insulated on the upper side. The ceiling height was adjustable between 0.5 m and 0.91 m. Temperature measurements were carried out in the plume, ceiling jet, and on the ceiling.

Heat transfer data were obtained by using the transient method and applying corrections for the radial conduction along the ceiling and losses through the insulation material. The ceiling heat transfer coefficient was based on the adiabatic ceiling jet temperature (recovery temperature) reached after a long time. A parameter involving the source strength Q and ceiling height H was found to correlate measurements of this temperature and its radial variation. A similar parameter for estimating the ceiling heat transfer coefficient was confirmed by the experimental results.

This investigation therefore provides reasonable estimates for the heat transfer from a buoyant gas plume to a ceiling in the axisymmetric case, for the stagnation region where such heat transfer is a maximum and for the ceiling jet region (r/H ≤ 0.7). A comparison with data from experiments which involved larger heat sources indicates that the predicted scaling of temperatures and heat transfer rates for larger scale fires is adequate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were established for the azeotropic mixture. A glass transition was observed at (111.9 +/- 1.1) K. The phase transitions took place at (179.26 +/- 0.77) and (269.69 +/- 0.14) K corresponding to the solid-liquid phase transitions of. n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was established, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: A phase I study to define toxicity and recommend a phase II dose of the HSP90 inhibitor alvespimycin (17-DMAG; 17-dimethylaminoethylamino-17-demethoxygeldanamycin). Secondary endpoints included evaluation of pharmacokinetic profile, tumor response, and definition of a biologically effective dose (BED). PATIENTS AND METHODS: Patients with advanced solid cancers were treated with weekly, intravenous (i.v.) 17-DMAG. An accelerated titration dose escalation design was used. The maximum tolerated dose (MTD) was the highest dose at which = 1/6 patients experienced dose limiting toxicity (DLT). Dose de-escalation from the MTD was planned with mandatory, sequential tumor biopsies to determine a BED. Pharmacokinetic and pharmacodynamic assays were validated prior to patient accrual. RESULTS: Twenty-five patients received 17-DMAG (range 2.5-106 mg/m(2)). At 106 mg/m(2) of 17-DMAG 2/4 patients experienced DLT, including one treatment-related death. No DLT occurred at 80 mg/m(2). Common adverse events were gastrointestinal, liver function changes, and ocular. Area under the curve and mean peak concentration increased proportionally with 17-DMAG doses 80 mg/m(2) or less. In peripheral blood mononuclear cells significant (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectric SrBi2Nb2O9 (SBN) thin films were prepared by the polymeric precursors method and deposited by spin coating onto Pt/Ti/SiO2/Si substrate and crystallized using a domestic microwave oven. It was studied the influence of the heat flux direction and the duration of the thermal treatment on the films crystallization. An element with high dielectric loss, a SiC susceptor, was used to absorb the microwave energy and transfers the heat to the film. Influence of the susceptor position to the sample crystallization was verified, the susceptor was, placed or below the substrate or above the film. The SBN perovskite phase was observed after a thermal treatment at 700 degreesC for 10 min when the susceptor was placed below the substrate and for 30 min when the susceptor was placed above the film. Electrical measurements revealed that the film crystallized at 700 degreesC for 10 min, with the susceptor placed below the film, presented dielectric constant, dielectric loss, remanent polarization and coercive field of, 67, 0.011, 4.2 muC/cm(2) and 27.5 kV/cm, respectively. When the films were crystallized at 700 degreesC for 30 min, with the susceptor placed above the film, the dielectric constant was 115 and the dissipation factor was around of 0.033, remanent polarization and coercive field were 10.8 muC/cm(2) and 170 kV/cm, respectively. (C) 2003 Elsevier B.V. All rights reserved.