974 resultados para Island of Elba,Fluid inclusions,Petrography,Torre di Rio skarn,Iron ore deposits
Resumo:
The historical iron ore deposits of eastern Elba held great importance for the region and were its primary source of iron. The Torre di Rio skarn, despite its easily accessible outcrop and vicinity to the larger Rio Marina deposit, was never properly characterized. The results of petrographic and microthermometric study presented in this work provide new constraints on the Torre di Rio skarn. Mineral assemblage of ilvaite, calcite, quartz, iron oxides and sulphides combined with textural evidence indicate that Torre di Rio skarn does not fit into classical skarn model. The complex paragenetic sequence and overlapping of skarn and ore mineralogy is result of fast formation at relatively low temperatures evidenced by the silicon enrichment and pervasive nature of limonite alteration. Hematite-magnetite textural relationship points to boundary conditions of the ore fluid in terms of oxygen fugacity. Eutectic temperatures range from -16 to -33 °C indicating complex fluids. Calculated salinities range from 1.4 to 17.4 wt% NaCleq suggesting multiple fluids of different compositions. Total homogenization temperatures vary from 330 °C to 150 °C with both homogeneously and heterogeneously trapped FIAs. Ore deposition is concentrated where skarn formation was controlled primarily by phase separation during boiling. Calculated fluid pressure at boiling suggest shallow formation depth of a few hundred meters and constrains maximum temperature of ore deposition to c. 260 °C. This work suggest that relatively low salinities of fluid inclusions could indicate dominant marine origin of the hydrothermal fluids that were activated by the Porto Azzurro pluton emplacement and that scavenged Fe from sedimentary host rocks. During boiling at shallow depths and decreasing iron solubility, these fluids started precipitating Fe-minerals at Torre di Rio mineralization. Mixing with batches of more saline fluids at around 236 °C increased salinity abruptly and marked the end of ore deposition.
Resumo:
A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.
Resumo:
A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.
Resumo:
The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.
Resumo:
The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.
Resumo:
Several major iron deposits occur in the Quadrilatero Ferrifero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Caue Formation, regionally called itabirite, was transformed into high- (Fe >64%) and lowgrade (30%
Resumo:
Mode of access: Internet.
Resumo:
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Resumo:
The Trepca Pb-Zn-Ag skarn deposit (29 Mt of ore at 3.45% Pb, 2.30% Zn, and 80 g/t Ag) is located in the Kopaonik block of the western Vardar zone, Kosovo. The mineralization, hosted by recrystallized limestone of Upper Triassic age, was structurally and lithologically controlled. Ore deposition is spatially and temporally related with the postcollisional magmatism of Oligocene age (23-26 Ma). The deposit was formed during two distinct mineralization stages: an early prograde closed-system and a later retrograde open-system stage. The prograde mineralization consisting mainly of pyroxenes (Hd(54-100)Jo(0-45)Di(0-45)) resulted from the interaction of magmatic fluids associated with Oligocene (23-26 Ma) postcollisional magmatism. Whereas there is no direct contact between magmatic rocks and the mineralization, the deposit is classified as a distal Pb-Zn-Ag skarn. Abundant pyroxene reflects low oxygen fugacity (<10(-31) bar) and anhydrous environment. Fluid inclusion data and mineral assemblage limit the prograde stage within a temperature range between 390 degrees and 475 degrees C. Formation pressure is estimated below 900 bars. Isotopic composition of aqueous fluid, inclusions hosted by hedenbergite (delta D = -108 to -130 parts per thousand; delta O-18 = 7.5-8.0 parts per thousand), Mn-enriched mineralogy and high REE content of the host carbonates at the contact with the skarn mineralization suggest that a magmatic fluid was modified during its infiltration through the country rocks. The retrograde mineral assemblage comprises ilvaite, magnetite, arsenopyrite, pyrrhotite, marcasite, pyrite, quartz, and various carbonates. Increases in oxygen and sulfur fugacities, as well as a hydrous character of mineralization, require an open-system model. The opening of the system is related to phreatomagmatic explosion and formation of the breccia. Arsenopyrite geothermometer limits the retrograde stage within the temperature range between 350 degrees and 380 degrees C and sulfur fugacity between 10(-8.8) and 10(-7.2) bars. The principal ore minerals, galena, sphalerite, pyrite, and minor chalcopyrite, were deposited from a moderately saline Ca-Na chloride fluid at around 350 degrees C. According to the isotopic composition of fluid inclusions hosted by sphalerite (delta D = -55 to -74 parts per thousand; delta O-18 = -9.6 to -13.6 parts per thousand), the fluid responsible for ore deposition was dominantly meteoric in origin. The delta S-31 values of the sulfides spanning between -5.5 and +10 parts per thousand point to a magmatic origin of sulfur. Ore deposition appears to have been largely contemporaneous with the retrograde stage of the skarn development. Postore stage accompanied the precipitation of significant amount of carbonates including the travertine deposits at the deposit surface. Mineralogical composition of travertine varies from calcite to siderite and all carbonates contain significant amounts of Mn. Decreased formation temperature and depletion in the REE content point to an influence of pH-neutralized cold ground water and dying magmatic system.
Resumo:
From the concentrations of dissolved atmospheric noble gases in water, a so-called “noble gas temperature” (NGT) can be determined that corresponds to the temperature of the water when it was last in contact with the atmosphere. Here we demonstrate that the NGT concept is applicable to water inclusions in cave stalagmites, and yields NGTs that are in good agreement with the ambient air temperatures in the caves. We analysed samples from two Holocene and one undated stalagmite. The three stalagmites originate from three caves located in different climatic regions having modern mean annual air temperatures of 27 °C, 12 °C and 8 °C, respectively. In about half of the samples analysed Kr and Xe concentrations originated entirely from the two well-defined noble gas components air-saturated water and atmospheric air, which allowed NGTs to be determined successfully from Kr and Xe concentrations. One stalagmite seems to be particularly suitable for NGT determination, as almost all of its samples yielded the modern cave temperature. Notably, this stalagmite contains a high proportion of primary water inclusions, which seem to preserve the temperature-dependent signature well in their Kr and Xe concentrations. In future work on stalagmites detailed microscopic inspection of the fluid inclusions prior to noble gas analysis is therefore likely to be crucial in increasing the number of successful NGT determinations.