941 resultados para Irrigation schemes
Resumo:
This report is a contribution to an assessment of the current status of agriculture in Cambodia, focusing on the linkages between agriculture and water, mainly in the form of irrigation. It seeks to view current government policies on agriculture and irrigation in the context of experiences on the ground, as communicated through the many field studies that cover varied aspects of performance in the agriculture sector and irrigation schemes. In an effort to identify future research areas, this review examines the status quo, and connects or disconnects with stated policy through a broad lens to capture strengths and challenges across crop production, irrigation management and post-harvest contexts. It places irrigation under scrutiny in terms of its value as a major area of government expenditure in recent years, and asks whether it presents the best potential for future gains in productivity, when compared with the prospects offered by investments in other aspects of agriculture. The fieldwork and review of current literature that form the basis of this report were undertaken at the request of, and partly funded by, the Australian Centre for International Agricultural Research (ACIAR). It is also intended to contribute knowledge to the CGIAR Research Program on Aquatic Agricultural Systems (AAS) led by WorldFish, who co-funded the activities.
Resumo:
The irrigation scheme Eduardo Mondlane, situated in Chókwè District - in the Southern part of the Gaza province and within the Limpopo River Basin - is the largest in the country, covering approximately 30,000 hectares of land. Built by the Portuguese colonial administration in the 1950s to exploit the agricultural potential of the area through cash-cropping, after Independence it became one of Frelimo’s flagship projects aiming at the “socialization of the countryside” and at agricultural economic development through the creation of a state farm and of several cooperatives. The failure of Frelimo’s economic reforms, several infrastructural constraints and local farmers resistance to collective forms of production led to scheme to a state of severe degradation aggravated by the floods of the year 2000. A project of technical rehabilitation initiated after the floods is currently accompanied by a strong “efficiency” discourse from the managing institution that strongly opposes the use of irrigated land for subsistence agriculture, historically a major livelihood strategy for smallfarmers, particularly for women. In fact, the area has been characterized, since the end of the XIX century, by a stable pattern of male migration towards South African mines, that has resulted in an a steady increase of women-headed households (both de jure and de facto). The relationship between land reform, agricultural development, poverty alleviation and gender equality in Southern Africa is long debated in academic literature. Within this debate, the role of agricultural activities in irrigation schemes is particularly interesting considering that, in a drought-prone area, having access to water for irrigation means increased possibilities of improving food and livelihood security, and income levels. In the case of Chókwè, local governments institutions are endorsing the development of commercial agriculture through initiatives such as partnerships with international cooperation agencies or joint-ventures with private investors. While these business models can sometimes lead to positive outcomes in terms of poverty alleviation, it is important to recognize that decentralization and neoliberal reforms occur in the context of financial and political crisis of the State that lacks the resources to efficiently manage infrastructures such as irrigation systems. This kind of institutional and economic reforms risk accelerating processes of social and economic marginalisation, including landlessness, in particular for poor rural women that mainly use irrigated land for subsistence production. The study combines an analysis of the historical and geographical context with the study of relevant literature and original fieldwork. Fieldwork was conducted between February and June 2007 (where I mainly collected secondary data, maps and statistics and conducted preliminary visit to Chókwè) and from October 2007 to March 2008. Fieldwork methodology was qualitative and used semi-structured interviews with central and local Government officials, technical experts of the irrigation scheme, civil society organisations, international NGOs, rural extensionists, and water users from the irrigation scheme, in particular those women smallfarmers members of local farmers’ associations. Thanks to the collaboration with the Union of Farmers’ Associations of Chókwè, she has been able to participate to members’ meeting, to education and training activities addressed to women farmers members of the Union and to organize a group discussion. In Chókwè irrigation scheme, women account for the 32% of water users of the familiar sector (comprising plot-holders with less than 5 hectares of land) and for just 5% of the private sector. If one considers farmers’ associations of the familiar sector (a legacy of Frelimo’s cooperatives), women are 84% of total members. However, the security given to them by the land title that they have acquired through occupation is severely endangered by the use that they make of land, that is considered as “non efficient” by the irrigation scheme authority. Due to a reduced access to marketing possibilities and to inputs, training, information and credit women, in actual fact, risk to see their right to access land and water revoked because they are not able to sustain the increasing cost of the water fee. The myth of the “efficient producer” does not take into consideration the characteristics of inequality and gender discrimination of the neo-liberal market. Expecting small-farmers, and in particular women, to be able to compete in the globalized agricultural market seems unrealistic, and can perpetuate unequal gendered access to resources such as land and water.
Resumo:
Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure –sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.
Resumo:
The applicability of ELISA kits was evaluated as an alternative to monitor bensulfuron-methyl and simetryn behavior in paddy water under intermittent (Plot 1) and continuous (Plot 2) irrigation schemes. Simetryn concentrations in both plots decreased exponentially from the peak of the first day. However, the simetryn kit systematically underestimated by a factor of 0.79 as compared to the GC method. Bensulfuron-methyl concentrations exhibited similar dissipation kinetics in paddy water and the drainage water. The bensulfuron-methyl kit was capable of distinguishing spatial variations of concentrations in the paddy field. The ELISA kits clearly indicated differences in the loss of both herbicides between the two plots and therefore may be useful for evaluating the water management practice of pesticide runoff control in paddy fields.
Resumo:
Microcatchment water harvesting (MCWH) improved the survival and growth of planted trees on heavy soils in eastern Kenya five to six years after planting. In the best method, the cross-tied furrow microcatchments, the mean annual increments (MAI; based on the average biomass of living trees multiplied by tree density and survival) of the total and usable biomass in Prosopis juliflora were 2787 and 1610 kg ha-1 a-1 respectively, when the initial tree density was 500 to 1667 trees per hectare. Based on survival, the indigenous Acacia horrida, A. mellifera and A. zanzibarica were the most suitable species for planting using MCWH. When both survival and yield were considered, a local seed source of the introduced P. juliflora was superior to all other species. The MAI in MCWH was at best distinctly higher than that in the natural vegetation (163307 and 66111 kg ha-1 a-1 for total and usable biomass respectively); this cannot satisfy the fuelwood demand of concentrated populations, such as towns or irrigation schemes. The density of seeds of woody species in the topsoil was 40.1 seeds m-2 in the Acacia-Commiphora bushland and 12.6 seeds m-2 in the zone between the bushland and the Tana riverine forest. Rehabilitation of woody vegetation using the soil seed bank alone proved difficult due to the lack of seeds of desirable species. The regeneration and dynamics of woody vegetation were also studied both in cleared and undisturbed bushland. A sub-type of Acacia-Commiphora bushland was identified as Acacia reficiens bushland, in which the dominant Commiphora species is C. campestris. Most of the woody species did not have even-aged populations but cohort structures that were skewed towards young individuals. The woody vegetation and the status of soil nutrients were estimated to recover in 1520 years on Vertic Natrargid soils after total removal of above-ground vegetation.
Resumo:
The aim of this paper is to emphasize the capacity and resilience of rural communities in regard to sustainable food security by adopting innovative approaches to irrigation. The shift from subsistence to commercial agriculture is promoted as a means to sustainable development. An analysis of the efficacy of irrigation schemes in Zimbabwe suggests that, in terms of providing sustainable agricultural production, they have neither been cost-effective nor have they provided long-term food security to their beneficiaries. This is certainly true of Shashe Scheme and most others in Beitbridge District. The Shashe Irrigation Scheme project represents a bold attempt at developing a fresh approach to the management of communal land irrigation schemes through a Private Public Community Partnership. The model illustrated represents a paradigm shift from subsistence agriculture to a system based on new technologies, market linkages and community ownership that build resilience and lead to sustainable food security and economic prosperity.
Resumo:
In the Nilo Coelho irrigation scheme, Brazil, the natural vegetation has been replaced by irrigated agriculture, bringing importance for the quantification of the effects on the energy exchanges between the mixed vegetated surfaces and the lower atmosphere. Landsat satellite images and agro-meteorological stations from 1992 to 2011 were used together, for modelling these exchanges. Surface albedo (α0), NDVI and surface temperature (T0) were the basic remote sensing retrieving parameters necessary to calculate the latent heat flux (λE) and the surface resistance to evapotranspiration (rs) on a large scale. The daily net radiation (Rn) was obtained from α0, air temperature (Ta) and short-wave transmissivity (τsw) throughout the slob equation, allowing the quantification of the daily sensible heat flux (H) by residual in the energy balance equation. With a threshold value for rs, it was possible to separate the energy fluxes from crops and natural vegetation. The averaged fractions of Rn partitioned as H and λE, were in average 39 and 67%, respectively. It was observed an increase of the energy used for the evapotranspiration process inside irrigated areas from 51% in 1992 to 80% in 2011, with the ratio λE/Rn presenting an increase of 3 % per year. The tools and models applied in the current research, can subsidize the monitoring of the coupled climate and land use changes effects in irrigation perimeters, being valuable when aiming the sustainability of the irrigated agriculture in the future, avoiding conflicts among different water users. © 2012 SPIE.
Resumo:
Changing precipitation patterns and temperature relate directly to water resources and water security. This report presents the findings of an assessment of the water sector in Grenada with respect to the projected impact of climate change. Grenada‘s water resources comprise primarily surface water, with an estimated groundwater potential to satisfy about 10%-15% of the present potable requirement. On the smaller islands Carriacou and Petite Martinique, domestic water is derived exclusively from rainwater catchments. Rainfall seasonality is marked and the available surface water during the dry season declines dramatically. Changing land use patterns, increase in population, expansion in tourism and future implementation of proposed irrigation schemes are projected to increase future water requirements. Economic modeling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios as illustrated. The results suggest that water supply will exceed forecasted water demand under B2 and BAU during all four decades. However under the A2 scenario, water demand will exceed water supply by the year 2025. It is important to note that the model has been constrained by the omission of several key parameters, and time series for climate indicators, data for which are unavailable. Some of these include time series for discharge data, rainfall-runoff data, groundwater recharge rates, and evapotranspiration. Further, the findings which seem to indicate adequacy of water are also masked by seasonality in a given year, variation from year to year, and spatial variation within the nation state. It is imperative that some emphasis be placed on data generation in order to better project for the management of Grenada‘s water security. This analysis indicates the need for additional water catchment, storage and distribution infrastructure, as well as institutional strengthening, in order to meet the future needs of the Grenadian population. Strategic priorities should be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Grenada has embarked on several initiatives that can be considered strategies toward adaptation to the variabilities associated with climate change. The Government should ensure that these programs be carried out to the optimal levels for reasons described above. The ―no-regrets approach‖ which intimates that measures will be beneficial with or without climate change should be adopted. A study on the Costs of Inaction for the Caribbean in the face of climate change listed Grenada among the countries which would experience significant impacts on GDP between now and 2100 without adaptation interventions. Investment in the water sector is germane to building Grenada‘s capacity to cope with the multivariate impact of changes in the parameters of climate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
El agua de riego en España se ha reducido del 80 % al 70% tras la rehabilitación de los sistemas tradicionales de riego y el incremento de riegos a presión. La política española ha favorecido la creación de nuevos regadíos con fines sociales, para asentar a la población rural en zonas con disponibilidad de recursos hídricos. Este contexto es aplicable a la Comunidad de Regantes “Rio Adaja” (CCRR), que comenzó a funcionar en 2010 por lo que se la ha elegido para evaluar el uso y productividad del agua y manejo del riego en CCRR modernizadas de la cuenca del Duero. El estudio del manejo del riego se realizó con evaluaciones de campo, el primer año de funcionamiento, en una muestra de sistemas de riego (pivotes centrales, ramales de avance frontal, cobertura total) representativa de los sistemas predominantes en la CCRR. Además, se analizó la carta de riego propuesta por el fabricante de los pivotes centrales, considerando una distribución de caudal continua a lo largo del ramal, y se propuso una nueva carta con emisores de riego que mejoraban la uniformidad de aplicación del agua. El uso del agua en la CCRR se evaluó considerando tanto los indicadores de eficiencia del riego: suministro relativo de riego (anual relative irrigation supply, ARIS), suministro relativo del agua (anual relativewater supply, ARWS), suministro relativo de precipitación (rainfall relative supply, RRS) como los de productividad: productividad del agua (water productivity, WP) productividad del agua de riego (irrigation water productivity, IWP) y productividad de la evapotranspiración (evapotranspiration water productivity, ETWP). Primero, se determinaron: las necesidades hídricas de los cultivos para mantener un contenido de humedad óptimo en su zona radical, el coeficiente dual del cultivo, el agua disponible total (ADP) y agua fácilmente aprovechable (AFA). Después, se estimaron las necesidades hídricas de los cultivos considerando tres años tipo: húmedo, normal y seco correspondientes a la probabilidad de disponibilidad de la precipitación del 20, 50 y 80%, respectivamente. Así mismo, se realizó una encuesta a los regantes de la CCRR para conocer la dosis de riego y rendimiento anual de los cultivos principales durante sus tres años de funcionamiento: 2010-2011, 2011-2012 y 2012-2013.Finalmente, se simuló el efecto del riego y su manejo en la producción de los cultivos y en la productividad del agua. Además, el modelo de simulación AQUACROP (Geerts et al., 2010) se ha utilizado para estudiar la mejora del uso del agua de los cultivos de la CCRR. Dado que este modelo requiere de calibración específica para cada cultivo y cada zona y dado que, de todos los cultivos de la CCRR, sólo el girasol cumplía el requisito, este cultivo fue elegido para estudiar si la estrategia de riego deficitario mejoraría el uso del agua. Los resultados obtenidos indican que el 90% de los sistemas de riego evaluados distribuye el agua con una uniformidad adecuada (CUC≥75%). La simulación de la distribución del agua con las cartas de riego propuestas por el fabricante en pivotes centrales resultó en coeficientes CUC< 75% y sus valores mejoraban al eliminar el aspersor distal. La uniformidad del riego mejoraría si se trabajase con la carta de riego propuesta y que se compone por emisores de riego seleccionados en este estudio. En la mayoría de los cultivos, se aplicó riegos deficitarios (ARIS < 1 en los dos primeros años de funcionamiento de la CCRR y riegos excedentarios (ARIS > 1) el tercer año siendo significativas las diferencias observadas. El manejo del riego fue bueno (0,9 ≤ ARWS ≤1,2) en la mayoría de los cultivos. Así mismo, los indicadores de productividad del agua (WP e IWP (€.m-3)) varió entre cultivos y años estudiados y, destacan los valores observados en: cebolla, patata, zanahoria y cebada. En general, la productividad del agua en los riegos deficitarios fue mayor observándose además, que los índices de productividad mayores correspondieron al año con precipitación mayor aunque, las diferencias entre sus valores medios no fueron significativas en las tres campañas de riego estudiadas. Los resultados apuntan a que la metodología del balance hídrico y las herramientas presentadas en este trabajo (uniformidad de distribución de agua, indicadores de eficiencia del uso de agua y de su productividad) son adecuadas para estudiar el manejo del agua en CCRR. En concreto, la uniformidad en la aplicación del agua de la CCRR mejoraría seleccionando emisores de riego que proporcionen una mayor uniformidad de distribución del agua, lo que conllevaría a cambiar el diámetro de la boquilla de los emisores y/o eliminar el aspersor distal. Así mismo, puede ser de interés adoptar estrategias de riego deficitario para incrementar la productividad en el uso del agua, y las rentas de los regantes, para lo cual se propone utilizar un patrón de cultivos de referencia. Finalmente, el riego deficitario puede ser una estrategia para mejorar la eficiencia y productividad en el uso del agua de la CCRR siempre que lleve asociado un manejo del riego adecuado que resulta, relativamente, más fácil cuando se dispone de sistemas de riego con una uniformidad de aplicación alta. Sin embargo su aplicación no sería aconsejable en los cultivos de remolacha azucarera, regado con sistemas de riego con un coeficiente de uniformidad de Christiansen CUC < 75%, y maíz, regado con sistemas de riego con un coeficiente de uniformidad de Christiansen CUC < 65%. ABSTRACT The irrigation scheme modernization and the increase of sprinkler irrigation area have reduced the irrigation water use from 80 to 70%. The national irrigation policy favored the creation of new irrigation schemes with the purpose to settle the rural population in areas with availability in water resources. Within this context, the irrigation district “Río Adaja” (CCRR) started in 2010 so, it has been chosen as a case study to evaluate the water use and the irrigation management in a modernized CCRR. Several field evaluations were carried out during the first operation year, in a sample of irrigation systems (center pivot, moving lateral and solid set) selected among all the systems in the CCRR. Likewise, the manufacturer irrigation chart for the center pivot systems has been considered and the pressure and discharge distribution along the pivot have been estimated, assuming a continuous flow along the pipe. Then; the sprinkler nozzles were selected order to increase the uniformity on water application. The water use in the CCRR has been assessed by considering the water use efficiency indicators: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS) and also the productivity indicators: water productivity (WP), irrigation water productivity (IWP) and evapotranspiration water productivity (ETWP). On the one hand, it has been determined the crop water requirement (to maintain the optimal soil water content in the rooting zone), the dual crop coefficient, the total available water and the readily available water. The crop water requirement was estimated by considering the typical wet, normal and dry years which correspond to the probability of effective precipitation exceedance of 20, 50 and 80%, respectively. On the other hand, the irrigation depth and crop yield by irrigation campaign have been considered for the main crops in the area. This information was obtained from a farmer’s survey in 2010-2011, 2011-2012 and 2012-2013. For sunflower, the irrigation effect and its management on the crop yield and water productivity have been simulated. Also a deficit irrigation strategy, which improves the water resources, has been determined by means of AQUACROP (FAO). The results showed that 90% of the evaluated irrigation systems have adequate irrigation water application uniformity (CUC ≥ 75%). The CUC values in center pivots, which were calculated using the manufacturer irrigation chart, are below < 75% . However, these values would increase with the change of emitter nozzle to the proposed nozzles selection. The results on water use showed a deficit irrigation management (ARIS < 1), in most of crops during the first two operation years, and an excess in irrigation for the third year (ARIS > 1) although non-significant difference was observed. In most cases, the management of irrigation is adequate (0,9≤ ARWS≤ 1,2) although there are differences among crops. Likewise, the productivity indicators (WP and IWP (€.m-3)) varied among crops and with irrigation events. The highest values corresponded to onion, potato, carrot and barley. The values for deficit irrigation were the highest and the productivity indicators increased the year with the highest effective precipitation. Nevertheless, the differences between the average values of these indicators by irrigation campaign were non-significant. This study highlights that the soil water balance methodology and other tools used in the methodology are adequate to study the use and productivity of water in the irrigation district. In fact, the water use in this CCRR can be improved if the irrigation systems were designed with higher water distribution uniformity what would require the change of sprinkler nozzles and/or eliminate the end gun. Likewise, it is advisable to set up deficit irrigation strategies to increase the water productivity taking into account certain limits on water application uniformities. In this respect, a reference cropping pattern has been proposed and the limits for water uniformity have been calculated for several crops.
Resumo:
Abstract The potential impacts of climate change and environmental variability are already evident in most parts of the world, which is witnessing increasing temperature rates and prolonged flood or drought conditions that affect agriculture activities and nature-dependent livelihoods. This study was conducted in Mwanga District in the Kilimanjaro region of Tanzania to assess the nature and impacts of climate change and environmental variability on agriculture-dependent livelihoods and the adaptation strategies adopted by small-scale rural farmers. To attain its objective, the study employed a mixed methods approach in which both qualitative and quantitative techniques were used. The study shows that farmers are highly aware of their local environment and are conscious of the ways environmental changes affect their livelihoods. Farmers perceived that changes in climatic variables such as rainfall and temperature had occurred in their area over the period of three decades, and associated these changes with climate change and environmental variability. Farmers’ perceptions were confirmed by the evidence from rainfall and temperature data obtained from local and national weather stations, which showed that temperature and rainfall in the study area had become more variable over the past three decades. Farmers’ knowledge and perceptions of climate change vary depending on the location, age and gender of the respondents. The findings show that the farmers have limited understanding of the causes of climatic conditions and environmental variability, as some respondents associated climate change and environmental variability with social, cultural and religious factors. This study suggests that, despite the changing climatic conditions and environmental variability, farmers have developed and implemented a number of agriculture adaptation strategies that enable them to reduce their vulnerability to the changing conditions. The findings show that agriculture adaptation strategies employ both planned and autonomous adaptation strategies. However, the study shows that increasing drought conditions, rainfall variability, declining soil fertility and use of cheap farming technology are among the challenges that limit effective implementation of agriculture adaptation strategies. This study recommends further research on the varieties of drought-resilient crops, the development of small-scale irrigation schemes to reduce dependence on rain-fed agriculture, and the improvement of crop production in a given plot of land. In respect of the development of adaptation strategies, the study recommends the involvement of the local farmers and consideration of their knowledge and experience in the farming activities as well as the conditions of their local environment. Thus, the findings of this study may be helpful at various levels of decision making with regard to the development of climate change and environmental variability policies and strategies towards reducing farmers’ vulnerability to current and expected future changes.
Resumo:
This study reports on the use of naturally occurring F-specific coliphages, as well as spiked MS-2 phage, to evaluate a land-based effluent treatment/reuse system and an effluent irrigation scheme. Both the natural phages and the spiked MS-2 phage indicated that the effluent treatment/reuse system (FILTER - Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) achieved a reduction in phage levels over the treatment system by one to two log10. FILTER reduced natural F-specific phage numbers from around 103 to below 102 100-ml-1 and the spiked phage from 105 to around 104 100-ml-1 (incoming compared with outgoing water). In the effluent irrigation scheme, phage spiked into the holding ponds dropped from 106 to 102 100-ml-1 after 168 h (with no detectable levels of natural F-specific phage being found prior to spiking). Only low levels of the spiked phage (102 gm-1) could be recovered from soil irrigated with phage-spiked effluent (at 106 phage 100 ml-1) or from fruits (around 102 phage per fruit) that had direct contact with soil which had been freshly irrigated with the same phage-spiked effluent.
Resumo:
In many arid or semi-arid Mediterranean regions, agriculture is dependent on irrigation. When hydrological drought phenomena occur, farmers suffer from water shortages, incurring important economic losses. Yet, there is not agricultural insurance available for lack of irrigation water. This work attempts to evaluate hydrological drought risk and its economic impact on crop production in order to provide the basis for the design of drought insurance for irrigated arable crops. With this objective a model that relates water availability with expected yields is developed. Crop water requirements are calculated from evapotranspiration, effective rainfall and soil water balance. FAO?s methodology and AquaCrop software have been used to establish the relationship between water allocations and crop yields. The analysis is applied to the irrigation zone ?Riegos de Bardenas?, which is located in the Ebro river basin, northeast Spain, to the main arable crops in the area. Results show the fair premiums of different hydrological drought insurance products. Whole-farm insurance or irrigation district insurance should be preferable to crop specific insurance due to the drought management strategies used by farmers.