996 resultados para Irrational rotation number
Resumo:
Motivated by return maps near saddles for three-dimensional flows and also by return maps in the torus associated to Cherry flows, we study gap maps with derivative positive and smaller than one outside the discontinuity point. We prove that the lamination of infinitely renormalizable maps (or else maps with irrational rotation numbers) has analytic leaves in a natural subset of a Banach space of analytic maps of this kind. With maps having Hölder continuous derivative and derivative bounded away from zero, we also prove Hölder continuity of holonomies of the lamination and also of conjugacies between maps having the same combinatorics. © 2011 Springer Basel AG.
Resumo:
This dissertation has two almost unrelated themes: privileged words and Sturmian words. Privileged words are a new class of words introduced recently. A word is privileged if it is a complete first return to a shorter privileged word, the shortest privileged words being letters and the empty word. Here we give and prove almost all results on privileged words known to date. On the other hand, the study of Sturmian words is a well-established topic in combinatorics on words. In this dissertation, we focus on questions concerning repetitions in Sturmian words, reproving old results and giving new ones, and on establishing completely new research directions. The study of privileged words presented in this dissertation aims to derive their basic properties and to answer basic questions regarding them. We explore a connection between privileged words and palindromes and seek out answers to questions on context-freeness, computability, and enumeration. It turns out that the language of privileged words is not context-free, but privileged words are recognizable by a linear-time algorithm. A lower bound on the number of binary privileged words of given length is proven. The main interest, however, lies in the privileged complexity functions of the Thue-Morse word and Sturmian words. We derive recurrences for computing the privileged complexity function of the Thue-Morse word, and we prove that Sturmian words are characterized by their privileged complexity function. As a slightly separate topic, we give an overview of a certain method of automated theorem-proving and show how it can be applied to study privileged factors of automatic words. The second part of this dissertation is devoted to Sturmian words. We extensively exploit the interpretation of Sturmian words as irrational rotation words. The essential tools are continued fractions and elementary, but powerful, results of Diophantine approximation theory. With these tools at our disposal, we reprove old results on powers occurring in Sturmian words with emphasis on the fractional index of a Sturmian word. Further, we consider abelian powers and abelian repetitions and characterize the maximum exponents of abelian powers with given period occurring in a Sturmian word in terms of the continued fraction expansion of its slope. We define the notion of abelian critical exponent for Sturmian words and explore its connection to the Lagrange spectrum of irrational numbers. The results obtained are often specialized for the Fibonacci word; for instance, we show that the minimum abelian period of a factor of the Fibonacci word is a Fibonacci number. In addition, we propose a completely new research topic: the square root map. We prove that the square root map preserves the language of any Sturmian word. Moreover, we construct a family of non-Sturmian optimal squareful words whose language the square root map also preserves.This construction yields examples of aperiodic infinite words whose square roots are periodic.
Resumo:
Let f be a homeomorphism of the closed annulus A that preserves the orientation, the boundary components and that has a lift (f) over tilde to the in finite strip (A) over tilde which is transitive. We show that, if the rotation number of (f) over tilde restricted to both boundary components of A is strictly positive, then there exists a closed nonempty connected set Gamma subset of (A) over tilde such that Gamma subset of] - infinity,0] x [0,1], Gamma is unbounded, the projection of to Gamma A is dense, Gamma - (1, 0) subset of Gamma and (f) over tilde(Gamma) subset of Gamma. Also, if p(1) is the projection on the first coordinate of (A) over tilde, then there exists d > 0 such that, for any (z) over tilde is an element of Gamma, lim sup (n ->infinity) p(1)((f) over tilde (n) ((Z) over tilde)) - p(1) ((Z) over tilde)/n < -d.
Resumo:
In the present work we study the processes of heating in the high stellar atmosphere, with base in an analysis of behavior of the cromospheric and coronal emission for a sample of single stars classified as giant in the literature. The evolutionary status of the stars of the sample was determined from HIPPARCOS satellite trigonometric parallax measurements and from the Toulouse Genéve code. In this study we show the form of behavior of the CaII emission flux in spectral lines H and K F(CaII) and the X-ray emission flux in function of the rotation, number of Rossby Ro and depth in mass of the convective envelope. In this analysis we show that while the cromospheric activity is dominated clearly by a physical process of heating associated with the rotation, like a magnetic field produced by dynamo effect, the coronal activity seems to be influenced for a mechanism independent of the rotation. We show also that the effective role of the depth in massa of the convective envelope on the stellar activity has an important effect in the responsible physical process for the behavior of the activity in the atmosphere of the stars.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
In fluids and plasmas with zonal flow reversed shear, a peculiar kind of transport barrier appears in the shearless region, one that is associated with a proper route of transition to chaos. These barriers have been identified in symplectic nontwist maps that model such zonal flows. We use the so-called standard nontwist map, a paradigmatic example of nontwist systems, to analyze the parameter dependence of the transport through a broken shearless barrier. On varying a proper control parameter, we identify the onset of structures with high stickiness that give rise to an effective barrier near the broken shearless curve. Moreover, we show how these stickiness structures, and the concomitant transport reduction in the shearless region, are determined by a homoclinic tangle of the remaining dominant twin island chains. We use the finite-time rotation number, a recently proposed diagnostic, to identify transport barriers that separate different regions of stickiness. The identified barriers are comparable to those obtained by using finite-time Lyapunov exponents.
Resumo:
The dynamics of a driven stadium-like billiard is considered using the formalism of discrete mappings. The model presents a resonant velocity that depends on the rotation number around fixed points and external boundary perturbation which plays an important separation rule in the model. We show that particles exhibiting Fermi acceleration (initial velocity is above the resonant one) are scaling invariant with respect to the initial velocity and external perturbation. However, initial velocities below the resonant one lead the particles to decelerate therefore unlimited energy growth is not observed. This phenomenon may be interpreted as a specific Maxwell's Demon which may separate fast and slow billiard particles. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Phenomena as reconnection scenarios, periodic-orbit collisions, and primary shearless tori have been recognized as features of nontwist maps. Recently, these phenomena and secondary shearless tori were analytically predicted for generic maps in the neighborhood of the tripling bifurcation of an elliptic fixed point. In this paper, we apply a numerical procedure to find internal rotation number profiles that highlight the creation of periodic orbits within islands of stability by a saddle-center bifurcation that emerges out a secondary shearless torus. In addition to the analytical predictions, our numerical procedure applied to the twist and nontwist standard maps reveals that the atypical secondary shearless torus occurs not only near a tripling bifurcation of the fixed point but also near a quadrupling bifurcation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4750040]
Resumo:
In the present paper, we solve a twist symplectic map for the action of an ergodic magnetic limiter in a large aspect-ratio tokamak. In this model, we study the bifurcation scenarios that occur in the remnants regular islands that co-exist with chaotic magnetic surfaces. The onset of atypical local bifurcations created by secondary shearless tori are identified through numerical profiles of internal rotation number and we observe that their rupture can reduce the usual magnetic field line escape at the tokamak plasma edge.
Resumo:
We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers
Resumo:
In this paper control of oblique vortex shedding in the wake behind a straight circular cylinder is explored experimentally and computationally. Towards this, steady rotation of the cylinder about its axis is used as a control device. Some limited studies are also performed with a stepped circular cylinder, where at the step the flow is inevitably three-dimensional irrespective of the rotation rate. When there is no rotation, the vortex shedding pattern is three dimensional as described in many previous studies. With a non-zero rotation rate, it is demonstrated experimentally as well as numerically that the shedding pattern becomes more and more two-dimensional. At sufficiently high rotation rates, the vortex shedding is completely suppressed.
Resumo:
In this paper, we construct (d, r) networks from sequences of different irrational numbers. In detail, segment an irrational number sequence of length M into groups of d digits which represent the nodes while two consecutive groups overlap by r digits (r = 0,1,...,d-1), and the undirected edges indicate the adjacency between two consecutive groups. (3, r) and (4, r) networks are respectively constructed from 14 different irrational numbers and their topological properties are examined. By observation, we find that network topologies change with different values of d, r and even sequence length M instead of the types of irrational numbers, although they share some similar features with traditional random graphs. We make a further investigation to explain these interesting phenomena and propose the identical-degree random graph model. The results presented in this paper provide some insight into distributions of irrational number digits that may help better understanding of the nature of irrational numbers.
Resumo:
This paper presents a novel matched rotation precoding (MRP) scheme to design a rate one space-frequency block code (SFBC) and a multirate SFBC for MIMO-OFDM systems with limited feedback. The proposed rate one MRP and multirate MRP can always achieve full transmit diversity and optimal system performance for arbitrary number of antennas, subcarrier intervals, and subcarrier groupings, with limited channel knowledge required by the transmit antennas. The optimization process of the rate one MRP is simple and easily visualized so that the optimal rotation angle can be derived explicitly, or even intuitively for some cases. The multirate MRP has a complex optimization process, but it has a better spectral efficiency and provides a relatively smooth balance between system performance and transmission rate. Simulations show that the proposed SFBC with MRP can overcome the diversity loss for specific propagation scenarios, always improve the system performance, and demonstrate flexible performance with large performance gain. Therefore the proposed SFBCs with MRP demonstrate flexibility and feasibility so that it is more suitable for a practical MIMO-OFDM system with dynamic parameters.