998 resultados para Iron tolerance
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Since the fifteen century, the rainfed-cultivation of wheat for grain is traditionally performed on the Island of Madeira. Under several microclimatic conditions and along very sloppy mountains, the landraces are grown on isolated terraces of Andosols with high amounts of iron. Iron oxides are the main inorganic binding agent contributing to the stability of aggregates and to soil fertility in long-term sustainable agriculture in acid and iron-rich soils. After a two day period of seedling initial growth, a screening test of sixty traditional wheat (Triticum spp.) landraces from the ISOPlexis Genebank at the University of Madeira, Funchal, was performed using nutrient solutions containing 10 or 600 mM Fe, during five days, under controlled laboratory conditions. The elongation of the longest primary root was measured for each genotype and the mean root increment relative to control (as, % relative root increment or RRI; n=28) calculated. This parameter appeared to be a sensitive indicator of Fe tolerance in wheat. Over 85% of wheat germplasm showed the RRI higher than 50%, while the RRI of seven accessions exceeded 70%. This indicates that those landraces are Fe tolerant and might be of particular interest for cultivation under acid rich iron soils of tropical and subtropical areas.
Resumo:
Since the fifteen century, the rainfed-cultivation of wheat for grain is traditionally performed on the Island of Madeira. Under several microclimatic conditions and along very sloppy mountains, the landraces are grown on isolated terraces of Andosols with high amounts of iron. Iron oxides are the main inorganic binding agent contributing to the stability of aggregates and to soil fertility in long-term sustainable agriculture in acid and iron-rich soils. After a two day period of seedling initial growth, a screening test of sixty traditional wheat (Triticum spp.) landraces from the ISOPlexis Genebank at the University of Madeira, Funchal, was performed using nutrient solutions containing 10 or 600 mM Fe, during five days, under controlled laboratory conditions. The elongation of the longest primary root was measured for each genotype and the mean root increment relative to control (as, % relative root increment or RRI; n=28) calculated. This parameter appeared to be a sensitive indicator of Fe tolerance in wheat. Over 85% of wheat germplasm showed the RRI higher than 50%, while the RRI of seven accessions exceeded 70%. This indicates that those landraces are Fe tolerant and might be of particular interest for cultivation under acid rich iron soils of tropical and subtropical areas.
Resumo:
Grafting is a technique that may affect plant tolerance to iron chlorosis in plants cultivated for their fruit. Therefore, the objective of this study was to evaluate the tolerance of non-grafted quince seedlings and pear grafted onto quince plants cultivated in pots with alkaline soil. The experiment was conducted in a greenhouse at the University of Cordoba, Spain, in pots (3 L) filled with alkaline soil, with one plant per pot. The treatments consisted of two genotypes, quince (Cydonia oblonga Mill) semi-woody rooted cuttings, cultivar BA29, and pear (Pyrus Communis L.), cultivar Ercolini, grafted onto quince cultivar BA29 (rootstock), and two nutrient solutions with and without iron (80 mu M Fe-EDDHA) arranged in a completely random design with eight repetitions. Each pot received 250 mL of the nutrient solution on June 3rd, 2010. Chlorophyll indirect measurements and the main stem length were evaluated for six weeks after the commencement of the treatments. During the last week, the main stem dry matter weight and the leaf total iron content were determined. It was found that grafting pear seedlings onto quince rootstock resulted in a higher tolerance to iron deficiency than when quince was not grafted. Non-grafted quince plants without iron in the nutrient solution, compared to the results with its application, showed low SPAD (Soil-Plant Analyses Development) values and resulted in plants with a lower leaf iron content and lower dry matter production; however, decreased seedling stem growth was observed only in the last week of cultivation.
Resumo:
Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.
Resumo:
The limits to biological processes on Earth are determined by physicochemical parameters, such as extremes of temperature and low water availability. Research into microbial extremophiles has enhanced our understanding of the biophysical boundaries which define the biosphere. However, there remains a paucity of information on the degree to which rates of microbial multiplication within extreme environments are determined by the availability of specific chemical elements. Here, we show that iron availability and composition of the gaseous phase (aerobic vs. microaerobic) determine susceptibility of a marine bacterium, Halomonas hydrothermalis, to sub-optimal and elevated temperature and salinity by impacting rates of cell division (but not viability). In particular, iron starvation combined with microaerobic conditions (5 % v/v of O2, 10 % v/v of CO2, reduced pH) reduced sensitivity to temperature across the 13 °C range tested. These data demonstrate that nutrient limitation interacts with physicochemical parameters to determine biological permissiveness for extreme environments. The interplay between resource availability and stress tolerance, therefore, may shape the distribution and ecology of microorganisms within Earth's biosphere.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The prehistoric cemetery of Barshalder is located along the main road on the boundary between Grötlingbo and Fide parishes, near the southern end of the island of Gotland in the Baltic Sea. The ceme-tery was used from c. AD 1-1100. The level of publication in Swedish archaeology of the first millennium AD is low compared to, for instance, the British and German examples. Gotland’s rich Iron Age cemeteries have long been intensively excavated, but few have received monographic treatment. This publication is intended to begin filling this gap and to raise the empirical level of the field. It also aims to make explicit and test the often somewhat intuitively conceived re-sults of much previous research. The analyses deal mainly with the Migration (AD 375–540), Vendel (AD 520–790) and Late Viking (AD 1000–1150) Periods. The following lines of inquiry have been prioritised. 1. Landscape history, i.e. placing the cemetery in a landscape-historical context. (Vol. 1, section 2.2.6) 2. Migration Period typochronology, i.e. the study of change in the grave goods. (Vol. 2, chapter 2) 3. Social roles: gender, age and status. (Vol. 2, chapter 3) 4. Religious identity in the 11th century, i.e. the study of religious indicators in mortuary cus-toms and grave goods, with particular emphasis on the relationship between Scandinavian paganism and Christianity. (Vol. 2, chapter 4) Barshalder is found to have functioned as a central cemetery for the surrounding area, located on pe-ripheral land far away from contemporary settle-ment, yet placed on a main road along the coast for maximum visibility and possibly near a harbour. Computer supported correspondence analysis and seriation are used to study the gender attributes among the grave goods and the chronology of the burials. New methodology is developed to distin-guish gender-neutral attributes from transgressed gender attributes. Sub-gender grouping due to age and status is explored. An independent modern chronology system with rigorous type definitions is established for the Migration Period of Gotland. Recently published chronology systems for the Vendel and Viking Periods are critically reviewed, tested and modified to produce more solid models. Social stratification is studied through burial wealth with a quantitative method, and the results are tested through juxtaposition with several other data types. The Late Viking Period graves of the late 10th and 11th centuries are studied in relation to the contemporary Christian graves at the churchyards. They are found to be symbolically soft-spoken and unobtrusive, with all pagan attributes kept apart from the body in a space between the feet of the deceased and the end of the over-long inhumation trench. A small number of pagan reactionary graves with more forceful symbolism are however also identified. The distribution of different 11th cen-tury cemetery types across the island is used to in-terpret the period’s confessional geography, the scale of social organisation and the degree of alle-giance to western and eastern Christianity. 11th century society on Gotland is found to have been characterised by religious tolerance, by an absence of central organisation and by slow piecemeal Christianisation.
Resumo:
The objective of this thesis was to study the response mechanisms of grapevine to Fe-deficiency and to potential Fe chlorosis prevention strategies. The results show that the presence of bicarbonate in the nutrient solution shifted the activity of PEPC and TCA cycle enzymes and the accumulation/translocation of organic acids in roots of Fe-deprived plants. The rootstock 140 Ruggeri displayed a typical behavior of calcicole plants under bicarbonate stress. The Fe chlorosis susceptible rootstock 101-14 reacted to a prolonged Fe-deficiency reducing the root activity of PEPC and MDH. Noteworthy, it accumulates high levels of citric acid in roots, indicating a low capacity to utilizing, transporting and/or exudating organic acids into the rhizosfere. In contrast, 110 Richter rootstock is capable to maintain an active metabolism of organic acids in roots, accumulating them to a lesser extent than 101-14. Similarly to 101-14, SO4 genotype displays a strong decrease of mechanisms associated to Fe chlorosis tolerance (PEPC and MDH enzymes). Nevertheless it is able to avoid excessive accumulation of citric acid in roots, similar as 110 Richter rootstock. Intercropping with Festuca rubra increased leaf chlorophyll content and net photosynthesis. In addition, intercropping reduces the activity of PEPC in roots, similary to Fe-chelate supply. Applications of NH4+ with nitrification inhibitor prevents efficiently Fe-deficiency, increases chlorophyll content, and induces similar root biochemical responses as Fe-EDDHA. Without the addition of nitrification inhibitors, the effectiveness of NH4+ supply on Fe chlorosis prevention resulted significantly lower. The aspects intertwined in this investigation highlight the complexity of Fe physiology and the fine metabolic tuning of grapevine genotypes to Fe availability and soil-related environmental factors. The experimental evidences reveal the need to carry out future researches on Fe nutrition maintaining a continous flow of knowledge between theoretical and agronomical perspectives for fully supporting the efforts devoted to convert science into practice.
Resumo:
Oral iron substitution has shown to be insufficient for treatment of severe iron deficiency anemia in pregnancy. Ferric carboxymaltose is a new intravenous (i.v.) iron formulation promising to be more effective and as safe as iron sucrose. We aimed to assess side effects and tolerance of ferric carboxymaltose compared to i.v. iron sucrose in pregnant women.
Resumo:
BACKGROUND In 2007, leading international experts in the field of inflammatory bowel disease (IBD) recommended intravenous (IV) iron supplements over oral (PO) ones because of superior effectiveness and better tolerance. We aimed to determine the percentage of patients with IBD undergoing iron therapy and to assess the dynamics of iron prescription habits (IV versus PO). METHODS We analyzed anonymized data on patients with Crohn's disease and ulcerative colitis extracted from the Helsana database. Helsana is a Swiss health insurance company providing coverage for 18% of the Swiss population (1.2 million individuals). RESULTS In total, 629 patients with Crohn's disease (61% female) and 398 patients with ulcerative colitis (57% female) were identified; mean observation time was 31.8 months for Crohn's disease and 31.0 months for ulcerative colitis patients. Of all patients with IBD, 27.1% were prescribed iron (21.1% in males; 31.1% in females). Patients treated with steroids, immunomodulators, and/or anti-tumor necrosis factor drugs were more frequently treated with iron supplements when compared with those not treated with any medications (35.0% versus 20.9%, odds ratio, 1.94; P < 0.001). The frequency of IV iron prescriptions increased significantly from 2006 to 2009 for both genders (males: from 2.6% to 10.1%, odds ratio = 3.84, P < 0.001; females: from 5.3% to 12.1%, odds ratio = 2.26, P = 0.002), whereas the percentage of PO iron prescriptions did not change. CONCLUSIONS Twenty-seven percent of patients with IBD were treated with iron supplements. Iron supplements administered IV were prescribed more frequently over time. These prescription habits are consistent with the implementation of guidelines on the management of iron deficiency in IBD.
Resumo:
Antibiotic resistance has become an important area of research because of the excessive use of antibiotics in clinical and agricultural settings that are driving the evolution of antibiotic resistant bacteria. However, drug tolerance is a naturally occurring phenomenon in soil communities, and is often linked to those soils that are exposed to heavy metals as well as antibiotics. Resistance to antibiotics maybe coupled with resistance to heavy metals in soil bacteria through efflux pumps that can be regulated by iron. Although considered s a heavy metal, iron is an essential component of life that regulates gene expression through the Ferric Uptake Regulator (Fur) protein. This master regulator protein is known to control siderophore production, and other biological pathways. As a suspected controller of biofilm formation, the role of Fur in environmental antibiotic resistance may be greater than is currently realized. In this study, we sought to explore a potential Fur-regulated drug tolerance pathway by understanding the response of soil bacteria when stressed with oxytetracycline and iron. Bacteria were collected from two locations in Miami Dade County. Isolates were first tested using Kirby-Bauer Disk Diffusion tests for antibiotic resistance/susceptibility and identified by 16S rDNA sequencing. A 96-well growth assay was developed to measure planktonic cell growth with 3 mM FeCl3, Oxytetracycline HCl, and the combination treatments. A Microtiter Dish Biofilm Formation Assay was employed and Fur diversity was evaluated. Tetracycline-susceptible bacterial isolates developed drug resistance with iron supplementation, but iron did not enhance biofilm formation. Development of a Fur-dependent drug resistance may be selected for, but further study is required to evaluate Fur evolution in the studied isolates. Gene expression analysis is also needed to further understand the ecological role of Fur and antibiotic resistance.
New Cadmium(II) and Iron(II) Coordination Frameworks Incorporating a Di(4-Pyridyl)Isoindoline Ligand