915 resultados para Iron sulfates
Resumo:
The purpose of this work is to obtain spherical particles yttrium iron garnet (YIG) by coprecipitation technique. The spherical particles were obtained from either nitrate or chloride salt solutions by controlling the precipitation medium. Different agents of dispersion such as PVP and ammonium iron sulfate were used to optimize the shape and size of YIG. Samples were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results show that the samples phase transition takes place at 850°C (orthorhombic phase) and at 1200°C (cubic phase). Spherical shape particles, with diameter of around 0.5 μm, present magnetization values close to the bulk value (26 emu g -1). © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Differently regioselective chitosan sulfates were prepared according to Hanno Baumann's methods. Their antioxidant potencies were investigated employing various established in vitro systems, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH)/superoxide/hydroxyl radicals scavenging, reducing power, iron ion chelating and total antioxidant activity. All kinds of sulfated chitosans (HCTS, TSCTS, SCTS, TCTS) showed strong inhibitory activity toward superoxide radical by the PMS-NADH system compared to Vc. According to the above-mentioned order their IC50 were 0.012, 0.040, 0.015, 0.022mg/mL, respectively, however, scavenging activity of Vc on superoxide radical was 68.19% at 2.0mg/mL. Scavenging activity of superoxide radical was found to be in the order of HCTS > SCTS > TCTS > TSCTS > Vc. Furthermore, all kinds of sulfated chitosans exhibited strong concentration-dependent inhibition of deoxyribose oxidation. Except for HCTS, others had stronger scavenging activity on hydroxyl radical than Vc. Scavenging effect of TSCTS on 1, 1 -diphenyl-2-picrylhydrazy] radical was little lower than that of BHA, but better than that of others. All kinds of sulfated chitosans were efficient in the reducing power, especially TSCTS. TSCTS and TCTS showed considerable ferrous ion chelating potency. The data obtained in vitro models clearly establish the antioxidant potency of all kinds of sulfated chitosans. These in vitro results suggested the possibility that sulfated chitosans could be effectively employed as ingredient in health or functional food, to alleviate oxidative stress. However, comprehensive studies need to be conducted to ascertain the in vivo safety of sulfated chitosans in experimental animal models. (C) 2004 Elsevier Ltd. All rights reserved.
New Cadmium(II) and Iron(II) Coordination Frameworks Incorporating a Di(4-Pyridyl)Isoindoline Ligand
Resumo:
In the title compound, [Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3], the metal centre is statistically occupied by AlIII and FeIII cations in a 3:1 ratio. The metal centre is within an octahedral O6 donor set defined by three chelating substituted acetoacetonate anions. The ligands are arranged around the periphery of the molecule with a mer geometry of the S atoms.
Resumo:
In this work, natural palygorskite impregnated with zero-valent iron (ZVI) was prepared and characterised. The combination of ZVI particles on surface of fibrous palygorskite can help to overcome the disadvantage of ultra-fine powders which may have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. There is a significant increase of methylene blue (MB) decolourized efficiency on acid treated palygorskite with ZVI grafted, within 5 mins, the concentration of MB in the solution was decreased from 94 mg/L to around 20 mg/L and the equilibration was reached at about 30 to 60 mins with only around 10 mg/L MB remained in solution. Changes in the surface and structure of prepared materials were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, surface analysing and scanning electron microscopy (SEM) with element analysis and mapping. Comparing with zero-valent iron and palygorskite, the presence of zero-valent iron reactive species on the palygorskite surface strongly increases the decolourization capacity for methylene blue, and it is significant for providing novel modified clay catalyst materials for the removal of organic contaminants from waste water.
Resumo:
Purpose: In the present work we consider our (in progress) spectroscopy study of zinc and iron phosphates under the influence external high pressure to determine zinc ion change coordination from tetrahedral to octahedral (or hexahedral) structure.----- Design/methodology/approach: The standard equipment is the optical high pressure cell with diamond (DAC). The DAC is assembled and then vibrational or electronic spectra are collected by mounting the cell in an infrared, Raman, EXAFS or UV-visible spectrometer.----- Findings: Mechanism by which zinc and iron methaphosphate material is transformed to glassy meta-phosphate is enhancing mechanical properties of tribofilm. The two decades of intensive study demonstrates that Zn (II) and Fe (III) ions participate to cross-link network under friction, hardening the phosphate.----- Research limitations/implications: Transition metal atoms with d orbital have flexible coordination numbers, for example zinc acts as a cross-linking agent increasing hardness, by changing coordination from tetrahedral to octahedral. Perhaps the external pressure effect on the [Zn–(O-P-)4 ] complex causes a transformation to an [Zn –(O-P-)6] grouping.----- Originality/value: This paper analyses high-pressure spectroscopy which has been applied for the investigation of 3D transition metal ions in solids. When studying pressure effects on coordination compounds structure, we can expect changes in ground electronic state (spin-crossovers), electronic spectra due to structural distortions (piezochromism), and changes in the ligand field causing shifts in the electronic transitions.
Resumo:
This paper presents the measurements of strain and the subsequent stress analysis on an in-service cast iron water main buried in reactive soil. The results indicate that the pipe crown experienced predominantly tensile stresses during drying in summer and, subsequently, these stresses reduce, eventually leading to compressive stresses as the soil swells with increase in moisture content with the approach of winter. It is also evident that flexural movement caused by thermal stresses and soil pressure has led to downward bending of the pipe in summer and subsequent upward movement in winter. The limited data collected from pipe strains and strengths indicate that it is possible for pipe capacity to be exceeded by thermal and soil stresses leading to pipe failure, provided the pipe has undergone significant corrosion.