999 resultados para Iron speciation
Resumo:
The distribution and speciation of iron was determined along a transect in the eastern Atlantic sector (6°E) of the Southern Ocean during a collaborative Scandinavian/South African Antarctic cruise conducted in late austral summer (December 1997/January 1998). Elevated concentrations of dissolved iron (>0.4 nM) were found at 60°S in the vicinity of the Spring Ice Edge (SIE) in tandem with a phytoplankton bloom, chiefly dominated by Phaeocystis sp. This bloom had developed rapidly after the loss of the seasonal sea ice cover. The iron that fuelled this bloom was mostly likely derived from sea ice melt. In the Winter Ice Edge (WIE), around 55°S, dissolved iron concentrations were low (<0.2 nM) and corresponded to lower biological productivity, biomass. In the Antarctic Polar Front, at approximately 50°S, a vertical profile of dissolved iron showed low concentrations (<0.2 nM); however, a surface survey showed higher concentrations (1-3 nM), and considerable patchiness in this dynamic frontal region. The chemical speciation of iron was dominated by organic complexation throughout the study region. Organic iron-complexing ligands ([L]) ranged from 0.9 to 3.0 nM Fe equivalents, with complex stability log K'(FeL) = 21.4-23.5. Estimated concentrations of inorganic iron (Fe') ranged from 0.03 to 0.79 pM, with the highest values found in the Phaeocystis bloom in the SIE. A vertical profile of iron-complexing ligands in the WIE showed a maximum consistent with a biological source for ligand production and near surface minimum possibly consistent with loss via photodecomposition. This work further confirms the role iron that has in the Southern Ocean in limiting primary productivity.
Resumo:
12 cores of Late Pleistocene - Holocene deposits were studied. They were collected by gravity cores on the continental slope and in the deep-water part of the Black Sea within the Adler-Tuapse polygon. In four of them in New Euxinian deposits at the base of a packet of hydrotroilite laminae paleomagnetic anomalies likely resulting from the Gothenburg magnetic excursion occur. Comparison with results of similar studies in the western Black Sea, where the Gothenburg magnetic excursion was previously found, let to validate stratigraphic synchronism of the hydrotroilite horizon in the eastern and western parts of the Black Sea and to confirm the authors' views about peculiarities of paleogeographical development of the Black Sea basin in the Late Pleistocene - Holocene.
Resumo:
Hydrothermal vent fluids are highly enriched in iron (Fe) compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world's surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) with salicylaldoxime (SA) as the artificial ligand. Our results for total dissolved Fe (dFe) in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1 and 11.8% being chemically labile. Iron binding ligand concentrations ([L]) were found in µM level with strong conditional stability constants up to logKFeL,Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.
Resumo:
Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.
Resumo:
Foreword 1. BACKGROUND AND OBJECTIVES (pdf, 0.1 Mb) 2. 2004 WORKSHOP SUMMARY (pdf, < 0.1 Mb) 2.1. What have we learned from the enrichment experiments? 2.2 What are the outstanding questions? 2.3 Recommendations for SEEDS-II 3. EXTENDED ABSTRACTS OF THE 2004 WORKSHOP 3.1 Synthesis of the Iron Enrichment Experiments: SEEDS and SERIES (pdf, 0.5 Mb) Iron fertilization experiment in the western subarctic Pacific (SEEDS) by Atsushi Tsuda The response of N and Si to iron enrichment in the Northeast Pacific Ocean: Results from SERIES by David Timothy, C.S. Wong, Yukihiro Nojiri, Frank A. Whitney, W. Keith Johnson and Janet Barwell-Clarke 3.2 Biological and Physiological Responses (pdf, 0.2 Mb) Zooplankton responses during SEEDS by Hiroaki Saito Phytoplankton community response to iron and temperature gradient in the NW and NE subarctic Pacific Ocean by Isao Kudo, Yoshifumi Noiri, Jun Nishioka, Hiroshi Kiyosawa and Atsushi Tsuda SERIES: Copepod grazing on diatoms by Frank A. Whitney, Moira Galbraith, Janet Barwell-Clarke and Akash Sastri The Southern Ocean Iron Enrichment Experiment: The nitrogen uptake response by William P. Cochlan and Raphael M. Kudela 3.3 Biogeochemical Responses (pdf, 0.5 Mb) What have we learned regarding iron biogeochemistry from iron enrichment experiments? by Jun Nishioka, Shigenobu Takeda and W. Keith Johnson Iron dynamics and temporal changes of iron speciation in SERIES by W. Keith Johnson, C.S. Wong, Nes Sutherland and Jun Nishioka Dissolved organic matter dynamics during SEEDS and SERIES experiments by Takeshi Yoshimura and Hiroshi Ogawa Formation of transparent exopolymer particles during the in-situ iron enrichment experiment in the western subarctic Pacific (SEEDS) by Shigenobu Takeda, Neelam Ramaiah, Ken Furuya and Takeshi Yoshimura Atmospheric measurement by Mitsuo Uematsu 3.4 Prediction from Models (pdf, 0.3 Mb) Modelling iron limitation in the North Pacific by Kenneth L. Denman and M. Angelica Peña A proposed model of the SERIES iron fertilization patch by Debby Ianson, Christoph Voelker and Kenneth L. Denman 4. LIST OF PARTICIPANTS FOR THE 2004 WORKSHOP (pdf, < 0.1 Mb) APPENDIX 1 Report of the 2000 Planning Workshop on Designing the Iron Fertilization Experiment in the Subarctic Pacific (pdf, 1 Mb) APPENDIX 2 Terms of Reference for the Advisory Panel on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 3 Historical List of Advisory Panel Members on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 4 IFEP-AP Annual Reports (pdf, 0.1 Mb) APPENDIX 5 PICES Press Articles (pdf, 0.6 Mb) (194 page document)
Resumo:
Iron speciation was determined in hemiplegic sediments from a high productivity area to investigate systematically the early diagenetic reactivity of Fe. A combination of various leaching agents (1 M HCI, dithionite buffered in citrate/acetic acid, HF/H2SO4, acetic Cr(II)) was applied to sediment and extracted more than 80% of total Fe. Subsequent Fe species determination defined specific mineral fractions that are available for Fe reduction and fractions formed as products of Fe diagenesis. To determine the Fe speciation of (sheet) silicates we explored an extraction procedure (HF/H2SO4) and verified the procedure by application to standard rocks. Variations of Fe speciation of (sheet) silicates reflect the possible formation of Fe-bearing silicates in near surface sediments. The same fraction indicates a change in the primary input at greater depth, which is supported by other parameters. The Fe(II)/ Fe(III) -ratio of total sediment determined by extractions was compared with Mössbauer-spectroscopy ] at room temperature and showed agreement within 10%. M6ssbauer-spectroscopy indicates the occurrence of siderite in the presence of free sulfide and pyrite, supporting the importance of microenvironments during mineral formation. The occurrence of other Fe(II) bearing minerals such as ankerite (Ca-, Fe-, Mg-carbonate) can be presumed but remains speculative.
Resumo:
Partial pressure of CO2 (pCO2) and iron availability in seawater show corresponding changes due to biological and anthropogenic activities. The simultaneous change in these factors precludes an understanding of their independent effects on the ecophysiology of phytoplankton. In addition, there is a lack of data regarding the interactive effects of these factors on phytoplankton cellular stoichiometry, which is a key driving factor for the biogeochemical cycling of oceanic nutrients. Here, we investigated the effects of pCO2 and iron availability on the elemental composition (C, N, P, and Si) of the diatom Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle by dilute batch cultures under 4 pCO2 (~200, ~380, ~600, and ~800 µatm) and five dissolved inorganic iron (Fe'; ~5, ~10, ~20, ~50, and ~100 pmol /L) conditions. Our experimental procedure successfully overcame the problems associated with simultaneous changes in pCO2 and Fe' by independently manipulating carbonate chemistry and iron speciation, which allowed us to evaluate the individual effects of pCO2 and iron availability. We found that the C:N ratio decreased significantly only with an increase in Fe', whereas the C:P ratio increased significantly only with an increase in pCO2. Both Si:C and Si:N ratios decreased with increasing pCO2 and Fe'. Our results indicate that changes in pCO2 and iron availability could influence the biogeochemical cycling of nutrients in future oceans with high- CO2 levels, and, similarly, during the time course of phytoplankton blooms. Moreover, pCO2 and iron availability may also have affected oceanic nutrient biogeochemistry in the past, as these conditions have changed markedly over the Earth's history.