960 resultados para Iron particles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Master of Science with orientation in Sustainable Processes) UANL, 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg gÿ1 soil)apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVIenhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation–reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carra sawdust pretrated with formaldehyde was used to adsorb RR239 (reactive azo dye) at varying pH and zerovalent iron (ZVI) dosage. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model. Batch experiments suggest that the decolorization efficiency was strongly enhanced with the presence of ZVI and low solution pH. The kinetics of dye sorption by mixed sorbent (5 g of sawdust and 180 mg of ZVI) at pH 2.0 was rapid, reaching more than 90% of the total discoloration in three minutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic properties of acicular (similar to60 and similar to200 nm) iron particles, obtained by reduction of alumina-coated goethite particles, are reported. X-ray diffraction and Mossbauer spectroscopy showed that the particles consist of a alpha-Fe core and a thin surface layer of maghemite. Magnetization data indicated an improvement of similar to28% in the saturation magnetization, coercive field, and squareness for particles with similar to60 nm. This magnetic property enhancement of the present particles, whose size is 40% smaller than those commercially available, could result in a similar decrease of the bit-size for higher density of magnetic media.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spindle-type iron fine particles have been prepared by reduction of silica-coated-hematite particles. Hydrogen reduction of the coated-hematite cores yielded uniform spindle-type iron particles, which were stabilized by surface oxidation. Narrow particle distributions are observed from TEM measurements. X-ray, Mössbauer and magnetization data are in agreement with the presence of nanosized α-Fe particles, having surface layer of spinel structure oxide. Mössbauer spectra show that the oxide surface is superparamagnetic at room temperature. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Zero valent iron (ZVI) has been extensively used as a reactive medium for the reduction of Cr(VI) to Cr(III) in reactive permeable barriers. The kinetic rate depends strongly on the superficial oxidation of the iron particles used and the preliminary washing of ZVI increases the rate. The reaction has been primarily modelled using a pseudo-first-order kinetics which is inappropriate for a heterogeneous reaction. We assumed a shrinking particle type model where the kinetic rate is proportional to the available iron surface area, to the initial volume of solution and to the chromium concentration raised to a power ˛ which is the order of the chemical reaction occurring at surface. We assumed α= 2/3 based on the likeness to the shrinking particle models with spherical symmetry. Kinetics studies were performed in order to evaluate the suitability of this approach. The influence of the following parameters was experimentally studied: initial available surface area, chromium concentration, temperature and pH. The assumed order for the reaction was confirmed. In addition, the rate constant was calculated from data obtained in different operating conditions. Digital pictures of iron balls were periodically taken and the image treatment allowed for establishing the time evolution of their size distribution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Magneto-active polymers are a class of smart materials commonly manufactured by mixing micron-sized iron particles in a rubber-like matrix. When cured in the presence of an externally applied magnetic field, the iron particles arrange themselves into chain-like structures that lend an overall anisotropy to the material. It has been observed through electron micrographs and X-ray tomographs that these chains are not always perfect in structure, and may have dispersion due to the conditions present during manufacturing or some undesirable material properties. We model the response of these materials to coupled magneto-mechanical loading in this paper using a probability based structure tensor that accounts for this imperfect anisotropy. The response of the matrix material is decoupled from the chain phase, though still being connected through kinematic constraints. The latter is based on the definition of a 'chain deformation gradient' and a 'chain magnetic field'. We conclude with numerical examples that demonstrate the effect of chain dispersion on the response of the material to magnetoelastic loading.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spherical carbon coated iron particles of nanometric diameter in the 510 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 58·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging MRI, hyperthermia).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spherical carbon coated iron particles of nanometric diameter in the 5-10 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 5-8·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5-300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging-MRI-, hyperthermia).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An extensive experimental and simulation study is carried out in conventional magnetorheological fluids formulated by dispersion of mixtures of carbonyl iron particles having different sizes in Newtonian carriers. Apparent yield stress data are reported for a wide range of polydispersity indexes (PDI) from PDI = 1.63 to PDI = 3.31, which for a log-normal distribution corresponds to the standard deviation ranging from to . These results demonstrate that the effect of polydispersity is negligible in this range in spite of exhibiting very different microstructures. Experimental data in the magnetic saturation regime are in quantitative good agreement with particle-level simulations under the assumption of dipolar magnetostatic forces. The insensitivity of the yield stresses to the polydispersity can be understood from the interplay between the particle cluster size distribution and the packing density of particles inside the clusters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing demand for high capacity data storage requires decreasing the head-to-tape gap and reducing the track width. A problem very often encountered is the development of adhesive debris on the heads at low humidity and high temperatures that can lead to an increase of space between the head and media, and thus a decrease in the playback signal. The influence of stains on the playback signal of reading heads is studied using RAW (Read After Write) tests and their influence on the wear of the heads by using indentation technique. The playback signal has been found to vary and the errors to increase as stains form a patchy pattern and grow in size to form a continuous layer. The indentation technique shows that stains reduce the wear rate of the heads. In addition, the wear tends to be more pronounced at the leading edge of the head compared to the trailing one. Chemical analysis of the stains using ferrite samples in conjunction with MP (metal particulate) tapes shows that stains contain iron particles and polymeric binder transferred from the MP tape. The chemical anchors in the binder used to grip the iron particles now react with the ferrite surface to create strong chemical bonds. At high humidity, a thin layer of iron oxyhydroxide forms on the surface of the ferrite. This soft material increases the wear rate and so reduces the amount of stain present on the heads. The stability of the binder under high humidity and under high temperature as well as the chemical reactions that might occur on the ferrite poles of the heads influences the dynamic behaviour of stains. A model of stain formation taking into account the channels of binder degradation and evolution upon different environmental conditions is proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the past decade, many studies have been conducted to determine the health effects induced by exposure to engineered nanomaterials (NMs). Specifically for exposure via inhalation, numerous in vitro and animal in vivo inhalation toxicity studies on several types of NMs have been published. However, these results are not easily extrapolated to judge the effects of inhaling NMs in humans, and few published studies on the human response to inhalation of NMs exist. Given the emergence of more industries utilizing iron oxide nanoparticles as well as more nanomedicine applications of superparamagnetic iron oxide nanoparticles (SPIONs), this review presents an overview of the inhalation studies that have been conducted in humans on iron oxides. Both occupational exposure studies on complex iron oxide dusts and fumes, as well as human clinical studies on aerosolized, micron-size iron oxide particles are discussed. Iron oxide particles have not been described to elicit acute inhalation response nor promote lung disease after chronic exposure. The few human clinical studies comparing inhalation of fine and ultrafine metal oxide particles report no acute changes in the health parameters measured. Taken together existing evidence suggests that controlled human exposure to iron oxide nanoparticles, such as SPIONs, could be conducted safely.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of iron-ore particles on the propagule release and growth of Sargassum vulgare C. Agardh was tested under treatments with different concentrations of iron-ore particles: 0.1, 1.0, 10.0 g.L-1 and a solution of 10.0 g.L-1 of filtered iron-ore. Filtered seawater was used as control. Photosynthesis vs. irradiance (P-I) curves were calculated for S. vulgare in the presence of iron-ore and in seawater. There was no significant difference in the number of propagules released by the receptacles or in the percentage of zygote formation among the treatments. The released propagules acted like aggregation centers for the particles, those more heavily coated with iron (10.0 g.L-1) exhibiting the highest sinking velocity (32.6 ± 9.8 mm.s-1). No difference in the percentage of embryo survival was detected during the first week in culture. After four weeks the embryos grew in all treatments. Maximum frond development (5.3 ± 0.8 mm) was observed in treatment of seawater enriched with Provasoli's medium (PES) while initial filoids did not develop in three treatments without PES and with iron-ore (0.1 g.L-1, 1.0 g.L-1 and 10.0 g.L-1). The values for Pmax, alpha and respiration showed no significant differences between the P-I curves. The calculated value for I K was 106.26 µmol.m-2.s-1 to the control curve and 981.49 µmol.m-2.s-1 to the iron-ore curve. The results indicate that the iron-ore particles in high concentration reduce the growth of S. vulgare as they recovered the embryos, juveniles and young plants. In contrast, the presence of the particles did not affect the release of gametes, percentage of zygote formation or the percentage of embryo survival.