896 resultados para Ionic strength effects
The effects of pH and ionic strength on topical delivery of a negatively charged porphyrin (TPPS(4))
Resumo:
Meso-tetra-[4-sulfonatophenyl]-porphyrin (TPPS(4)) is a charged porphyrin derivate used in photodynamic therapy (PDT) by parenteral administration. This study means to investigate potential enhancement for its topical delivery by determining the TPPS(4) dependence on the environmental characteristics and applying iontophoresis. In order to accomplish this task, cathodal and anodal iontophoresis as well as passive delivery of the drug were studied in vitro and in vivo in function of its concentration, pH and ionic strength. A reduction in drug concentration as well as the NaCl elimination from donor formulation at pH 2.0 increased TPPS(4) passive permeation through the skin in vitro. Iontophoresis improved TPPS(4) delivery across the skin when applied in solutions containing NaCl at pH 2.0, regardless electrode polarity. However, at pH 7.4, the amount of TPPS(4) permeated by iontophoresis was not different from that one permeated after passive experiments from a solution containing NaCl. Despite the fact that iontophoresis did not improve TPPS(4) transdermal delivery at this specific condition, in vivo experiments showed that 10 min of iontophoresis quickly and homogeneously delivered TPPS(4) to deeper skin layers when compared to passive administration, which is an important condition for topical treatment of skin tumors with PDT. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association.
Resumo:
Layered Double Hydroxides are a class of materials that can be described as positively charged planar layers consisting of divalent and trivalent cations in the center of edge-sharing octahedra. The positive charge in the LDH layers must be compensated by anion intercalation. These materials have applications that include adsorption and/or sorption of anionic species. Cholic acid is one of the main acids produced by the liver. It promotes transport of lipids through aqueous systems. This work reports on the adsorption of Cholic acid anions in MgAl-CO3-LDH taking ionic strength, pH, and temperature effects into account. The adsorbent was characterized by different techniques. Cholate anion adsorption was performed at two different temperatures (298 and 323 K), two different ionic strength conditions (0.0 and 0.1 M of NaCl), and two different pH values (7.0 and 10.0). The results show that the sorption of Cholate anions in calcined LDH can remove a considerable amount of these anions from the medium. Cholate anion adsorption in the LDH with no calcining also occurs, but at a lower amount.
Resumo:
We have studied the adsorption of two structurally similar forms of hemoglobin (met-Hb and HbCO) to a hydrophobic self-assembled methyl-terminated thiol monolayer on a gold surface, by using a Quartz Crystal Microbalance (QCM) technique. This technique allows time-resolved simultaneous measurements of changes in frequency (f) (c.f. mass) and energy dissipation (D) (c.f. rigidity/viscoelastic properties) of the QCM during the adsorption process, which makes it possible to investigate the viscoelastic properties of the different protein layers during the adsorption process. Below the isoelectric points of both met-Hb and HbCO, the ΔD vs. Δf graphs displayed two phases with significantly different slopes, which indicates two states of the adsorbed proteins with different visco-elastic properties. The slope of the first phase was smaller than that of the second phase, which indicates that the first phase was associated with binding of a more rigidly attached, presumably denatured protein layer, whereas the second phase was associated with formation of a second layer of more loosely bound proteins. This second layer desorbed, e.g., upon reduction of Fe3+ of adsorbed met-Hb and subsequent binding of carbon monoxide (CO) forming HbCO. Thus, the results suggest that the adsorbed proteins in the second layer were in a native-like state. This information could only be obtained from simultaneous, time-resolved measurements of changes in both D and f, demonstrating that the QCM technique provides unique information about the mechanisms of protein adsorption to solid surfaces.
Resumo:
The effects of ionic strength on ions in aqueous solutions are quite relevant, especially for biochemical systems, in which proteins and amino acids are involved. The teaching of this topic and more specifically, the Debye-Hückel limiting law, is central in chemistry undergraduate courses. In this work, we present a description of an experimental procedure based on the color change of aqueous solutions of bromocresol green (BCG), driven by addition of electrolyte. The contribution of charge product (z+|z-|) to the Debye-Hückel limiting law is demonstrated when the effects of NaCl and Na2SO4 on the color of BCG solutions are compared.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
As part of an ongoing effort to improve the technique of immunoscintigraphy for the detection of human carcinomas with radiolabeled monoclonal antibodies (MABs) to carcinoembryonic antigen (CEA), we have developed a series of MABs to CEA and have studied the effects of low- and physiological molarity buffers on their CEA binding and affinity, as well as their cross-reactivity with granulocyte glycoprotein(s). These in vitro results in different buffer systems were then correlated with the use of these MABs to CEA in the detection of human colon carcinoma grafts in nude mice. Our results show that the binding of CEA by some MABs is influenced by ionic strength and that this may be an important factor in their successful use for the immunolocalization of carcinomas in vivo.
Resumo:
The effects of ionic strength on ions in aqueous solutions are quite relevant, especially for biochemical systems, in which proteins and amino acids are involved. The teaching of this topic and more specifically, the Debye-Hückel limiting law, is central in chemistry undergraduate courses. In this work, we present a description of an experimental procedure based on the color change of aqueous solutions of bromocresol green (BCG), driven by addition of electrolyte. The contribution of charge product (z+|z-|) to the Debye-Hückel limiting law is demonstrated when the effects of NaCl and Na2SO4 on the color of BCG solutions are compared.
Resumo:
The molar single activity coefficients associated with propionate ion (Pr) have been determined at 25 degrees C and ionic strengths comprised between 0.300 and 3.00 M, adjusted with NaClO4, as background electrolyte. The investigation was carried out potentiometrically by using a second class Hg/Hg2Pr2 electrode. It was found that the dependence of propionate activity coefficients as a function of ionic strength (I) can be assessed through the following empirical equation: log y(Pr) = -0.185 I-3/2 + 0.104 I-2. Next, simple equations relating stoichiometric protonation constants of several monocarboxylates and formation constants associated with 1:1 complexes involving some bivalent cations and selected monocarboxylates, in aqueous solution, at 25 degrees C, as a function of ionic strength were derived, allowing the interconversion of parameters from one ionic strength to another, up to I = 3.00 M. In addition, thermodynamic formation constants as well as parameters associated with activity coefficients of the complex species in the equilibria are estimated. The body of results shows that the proposed calculation procedure is very consistent with critically selected experimental data.
Resumo:
Simple equations were derived relating stoichiometric protonation constants of several monocarboxylates and formation constants associated with 1:1 complexes involving some bivalent cations and selected monocarboxylates, in aqueous sodium perchlorate media, at 25 degrees C, as a function of ionic strength (I), allowing the interconversion of parameters from one ionic strength to another, up to I = 3.00 M. In addition, thermodynamic formation constants as well as activity coefficients of the species involved in the equilibria were estimated. The results show that the proposed calculation procedure is very consistent with critically selected experimental data.
Resumo:
The leaching of N fertilisers has led to the formation of nitrate (NO3) accumulations in deep subsoils (>5 m depth) of the Johnstone River catchment. This paper outlines the chemical mechanism by which these NO3 accumulations are formed and maintained. This was achieved via a series of column experiments designed to investigate NO3 leaching in relation to the soil charge chemistry and the competition of anions for exchange sites. The presence of variable charge minerals has led to the formation positive surface charge within these profiles. An increase in the soil solution ionic strength accompanying the fertiliser leaching front acts to increase the positive (and negative) charge density, thus providing adsorption sites for NO3. A decrease in the soil solution ionic strength occurs after the fertiliser pulse moves past a point in the profile, due to dilution with incoming rainwater. Nitrate is then released from the exchange back into the soil solution, thus buffering the decrease in the soil solution ionic strength. Since NO3 was adsorbed throughout the profile in this experiment it does not effectively explain the situation occurring in the field. Previous observations of the sulfate (SO4) profile distribution indicated that large SO4 accumulations in the upper profile may influence the NO3 distribution through competition for adsorption sites. A subsequent experiment investigating the effect of SO4 additions on NO3 leaching showed that NO3 adsorption was minimal in the upper profile. Adsorption of NO3 did occur, though only in the region of the profile where SO4 occupancy was low, i.e. in the lower profile. Therefore, the formation of the NO3 accumulations is dependent on the variable charge mineralogy, the variation of charge density with soil solution ionic strength, and the effects of SO4 competition for adsorption sites.
Resumo:
Clavulanic acid (CA) is a beta-lactam antibiotic that alone exhibits only weak antibacterial activity, but is a potent inhibitor of beta-lactamases enzymes. For this reason it is used as a therapeutic in conjunction with penicillins and cephalosporins. However, it is a well-known fact that it is unstable not only during its production phase, but also during downstream processing. Therefore, the main objective of this study was the evaluation of CA long-term stability under different conditions of pH and temperature, in the presence of variable levels of different salts, so as to suggest the best conditions to perform its simultaneous production and recovery by two-phase polymer/salt liquid-liquid extractive fermentation. To this purpose, the CA stability was investigated at different values of pH (4.0-8.0) and temperature (20-45 degrees C), and the best conditions were met at a pH 6.0-7.2 and 20 degrees C. Its stability was also investigated at 30 degrees C in the presence of NaCl, Na(2)SO(4), CaCl(2) and MgSO(4) at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 6.5). All salts led to increased CA instability with respect to the buffer alone, and this effect decreased in following sequence: Na(2)SO(4) > MgSO(4) > CaCl(2) > NaCl. Kinetic and thermodynamic parameters of CA degradation were calculated adopting a new model that took into consideration the equilibrium between the active and a reversibly inactivated form of CA after long-time degradation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The relationship between sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) for all soils has traditionally been assumed to be similar to that developed by the United States Salinity Laboratory (USSL) in 1954. However, under certain conditions, this relationship has been shown not to be constant, but to vary with both ionic strength and clay mineralogy. We conducted a detailed experiment to determine the effect of ionic strength on the Na+-Ca2+ exchange of four clay minerals (kaolinite, illite, pyrophyllite, and montmorillonite), with results related to the diffuse double-layer (DDL) model. Clays in which external exchange sites dominated (kaolinite and pyrophyllite) tended to show an overall preference for Na+, with the magnitude of this preference increasing with decreasing ESP. For these external surfaces, increases in ionic strength were found to increase preference for Na+. Although illite (2:1 non-expanding mineral) was expected to be dominated by external surfaces, this clay displayed an overall preference for Ca2+, possibly indicating the opening of quasicrystals and the formation of internal exchange surfaces. For the expanding 2:1 clay, montmorillonite, Na+-Ca2+ exchange varied due to the formation of quasicrystals (and internal exchange surfaces) from individual clay platelets. At small ionic strength and large ESP, the clay platelets dispersed and were dominated by external exchange surfaces (displaying preference for Na+). However, as ionic strength increased and ESP decreased, quasicrystals (and internal exchange surfaces) formed, and preference for Ca2+ increased. Therefore, the relationship between SAR and ESP is not constant and should be determined directly for the soil of interest.
Resumo:
We have grown surfactant-templated silicate films at the air-water interface using n-alkyltrimethylammonium bromide and chloride in an acid synthesis with tetraethyl orthosilicate as the silicate source. The films have been grown with and without added salt (sodium chloride, sodium bromide) and with n-alkyl chain lengths from 12 to 18, the growth process being monitored by X-ray reflectometry. Glassy, hexagonal, and lamellar structures have been produced in ways that are predictable from the pure surfactant-water phase diagrams. The synthesis appears to proceed initially through an induction period characterized by the accumulation of silica-coated spherical micelles near the surface. All syntheses, except those involving C(12)TACl, show a sudden transformation of the spherical micellar phase to a hexagonal phase. This occurs when the gradually increasing ionic strength and/or changing ethanol concentration is sufficient to change the position of boundaries within the phase diagram. A possible mechanism for this to occur may be to induce a sphere to rod transition in the micellar structure. This transformation, as predicted from the surfactant-water phase diagram, can be induced by addition of salts and is slower for chloride than bromide counteranions. The hexagonal materials change in cell dimension as the chain length is changed in a way consistent with theoretical model predictions. All the materials have sufficiently flexible silica frameworks that phase interconversion is observed both from glassy to hexagonal and from hexagonal, to lamellar and vice versa in those surfactant systems where multiple phases are found to exist.
Resumo:
In this work we report the adsorption of phenylalanine (Phe) on Magnesium Aluminum Layered Double Hydroxides (Mg-Al-CO(3)-LDH) at two different temperatures (298 and 310 K) and under two distinct ionic strength conditions (with and without the addition 0.1 M of NaCl). The adsorption isotherms exhibit the same profile in all conditions, and they only differ in the amount of removed Phe. At lower ionic strength, the isotherms are almost identical at both temperatures, except for the last points, where the increase in temperature causes a decrease in the amount of adsorbed Phe. An increase in ionic strength results in a decrease in Phe adsorption. The electrokinetic potential decreases as the amount of adsorbed Phe increases, and only positive values are observed. This indicates that the surface of the adsorbent is not totally neutralized and suggests that more Phe could be removed by adsorption. The presence of Phe on the solid is confirmed by FTIR spectra, which present the specific bands assigned to Phe. The hydrophobicity of the amino acid probably contributes to its extraction, thus enabling the removal of a great amount of Phe. In conclusion, LDH is potentially applicable in the removal of Phe from wastewater.