426 resultados para Invitro Prolactin
Resumo:
Although vasoactive intestinal polypeptide (VIP) is thought to be a prolactin releasing factor, in vivo studies on sheep suggest that it is inactive in this species. Recent studies, based primarily on the rat, suggest that the related pituitary adenylate cyclase-activating polypeptide (PACAP) is also a hypophysiotrophic factor but again in sheep, this peptide has no in vivo effects on hormone secretion despite being a potent activator of adenylate cyclase in vitro. This lack of response to either peptide in vivo in sheep could be due to the low concentration of peptide that reaches the pituitary gland following peripheral injection. In the present study we therefore adopted an alternative approach of evaluating in vitro effects of these peptides on GH, FSH, LH or prolactin secretion from dispersed sheep pituitary cells. In a time-course study, PACAP (1 mu mol/l) increased GH concentrations in the culture medium between 1 and 4 h and again at 12 h but had no effect in the 6 and 24 h incubations. Prolactin, LH and FSH were not affected by PACAP. The response to various concentrations of PACAP (1 nmol/l-1 mu mol/l) were then evaluated using a 3 h incubation. Again prolactin and LH were not affected by PACAP and there was a small increase in GH concentrations but only at high concentrations of PACAP (0.1 and 1 mu mol/l; P<0.05), PACAP also stimulated FSH secretion in cells from some animals although this effect was small, The GH response to PACAP was inhibited by PACAP(6-38), a putative PACAP antagonist; but not by (N-Ac-Tyr(1), D-Arg(2))-GHRH(1-29)-NH2, a GH-releasing hormone (GHRH) antagonist. The cAMP antagonist Rp-cAMPS was unable to block the GH response to PACAP suggesting that cAMP does not mediate the secretory response to this peptide. At incubation times from 1-24 h, VIP (1 mu mol/l) had no effects on prolactin, LH or GH secretion and, in a further experiment based on a 3 h incubation, concentrations of VIP from 1 nmol/l-1 mu mol/l were again without effect on prolactin concentrations. Interactions between PACAP and gonadotrophin releasing hormone (GnRH), GHRH and dopamine were also investigated. PACAP (1 nmol/l-1 mu mol/l) did not affect the gonadotrophin or prolactin responses to GnRH or dopamine respectively. However, at a high concentration (1 mu mol/l), PACAP inhibited the GH response to GHRH. In summary, these results show that PACAP causes a modest increase in FSH and GH secretion from sheep pituitary cells but only at concentrations of PACAP that are unlikely to be in the physiological range. The present study confirms that VIP is not a prolactin releasing factor in sheep.
Resumo:
To perform a comparative evaluation of the mechanical resistance of simulated fractures of the mandibular body which were repaired using different fixation techniques with two different brands of 2.0 mm locking fixation systems. Four aluminum hemimandibles with linear sectioning simulating a mandibular body fracture were used as the substrates and were fixed using the two techniques and two different brands of fixation plate. These were divided into four groups: groups I and II were fixed with one four-hole plate, with four 6 mm screws in the tension zone and one four-hole plate, with four 10 mm screws in the compression zone; and groups III and IV were fixed with one four-hole plate with four 6 mm screws in the neutral zone. Fixation plates manufactured by Tóride were used for groups I and III, and by Traumec for groups II and IV. The hemimandibles were submitted to vertical, linear load testing in an Instron 4411 servohydraulic mechanical testing unit, and the load/displacement (3 mm, 5 mm and 7 mm) and the peak loads were measured. Means and standard deviations were evaluated applying variance analysis with a significance level of 5%. The only significant difference between the brands was seen at displacements of 7 mm. Comparing the techniques, groups I and II showed higher mechanical strength than groups III and IV, as expected. For the treatment of mandibular linear body fracture, two locking plates, one in the tension zone and another in the compression zone, have a greater mechanical strength than a single locking plate in the neutral zone.
Resumo:
Vaso-occlusion, responsible for much of the morbidity of sickle-cell disease, is a complex multicellular process, apparently triggered by leukocyte adhesion to the vessel wall. The microcirculation represents a major site of leukocyte-endothelial interactions and vaso-occlusive processes. We have developed a biochip with subdividing interconnecting microchannels that decrease in size (40 μm to 10 μm in width), for use in conjunction with a precise microfluidic device, to mimic cell flow and adhesion through channels of sizes that approach those of the microcirculation. The biochips were utilized to observe the dynamics of the passage of neutrophils and red blood cells, isolated from healthy and sickle-cell anemia (SCA) individuals, through laminin or endothelial adhesion molecule-coated microchannels at physiologically relevant rates of flow and shear stress. Obstruction of E-selectin/intercellular adhesion molecule 1-coated biochip microchannels by SCA neutrophils was significantly greater than that observed for healthy neutrophils, particularly in the microchannels of 40-15 μm in width. Whereas SCA red blood cells alone did not significantly adhere to, or obstruct, microchannels, mixed suspensions of SCA neutrophils and red blood cells significantly adhered to and obstructed laminin-coated channels. Results from this in vitro microfluidic model support a primary role for leukocytes in the initiation of SCA occlusive processes in the microcirculation. This assay represents an easy-to-use and reproducible in vitro technique for understanding molecular mechanisms and cellular interactions occurring in subdividing microchannels of widths approaching those observed in the microvasculature. The assay could hold potential for testing drugs developed to inhibit occlusive mechanisms such as those observed in SCA and thrombotic diseases.
Resumo:
The relationship between prolactin (PRL) and the immune system has been demonstrated in the last two decades and has opened new windows in the field of immunoendocrinology. However, there are scarce reports about PRL in primary antiphospholipid syndrome (pAPS). The objective of this study was to evaluate PRL levels in patients with pAPS compared to healthy controls and to investigate their possible clinical associations. Fifty-five pAPS patients according to Sapporo criteria were age- and sex-matched with 41 healthy subjects. Individuals with secondary causes of hyperprolactinemia (HPRL) were excluded; demographic, biometric, and clinical data, PRL levels, antiphospholipid antibodies, inflammatory markers, and other routine laboratory findings were analyzed. PRL levels were similar between pAPS and healthy controls (8.94 +/- 7.02 versus 8.71 +/- 6.73 ng/mL, P = .876). Nine percent of the pAPS patients and 12.1% of the control subjects presented HPRL (P = .740). Comparison between the pAPS patients with hyper- and normoprolactinemia revealed no significant differences related to anthropometrics, clinical manifestations, medications, smoking, and antiphospholipid antibodies (P > .05). This study showed that HPRL does not seem to play a role in clinical manifestations of the pAPS, differently from other autoimmune rheumatic diseases.
Resumo:
Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectornized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of DA antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and DA actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of DA through D-2 receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of DA through D, receptors and in other part by inhibition of stimulatory action of DA through D2 receptors.
Resumo:
Transplantation of pancreatic islets constitutes a promising alternative treatment for type 1 diabetes. However, it is limited by the shortage of organ donors. Previous results from our laboratory have demonstrated beneficial effects of recombinant human prolactin (rhPRL) treatment on beta cell cultures. We therefore investigated the role of rhPRL action in human beta cell survival, focusing on the molecular mechanisms involved in this process. Human pancreatic islets were isolated using an automated method. Islet cultures were pre-treated in the absence or presence of rhPRL and then subjected to serum starvation or cytokine treatment. Beta cells were labelled with Newport green and apoptosis was evaluated using flow cytometry analysis. Levels of BCL2 gene family members were studied by quantitative RT-PCR and western blot. Caspase-8, -9 and -3 activity, as well as nitric oxide production, were evaluated by fluorimetric assays. The proportion of apoptotic beta cells was significantly lowered in the presence of rhPRL under both cell death-induced conditions. We also demonstrated that cytoprotection may involve an increase of BCL2/BAX ratio, as well as inhibition of caspase-8, -9 and -3. Our study provides relevant evidence for a protective effect of lactogens on human beta cell apoptosis. The results also suggest that the improvement of cell survival may involve, at least in part, inhibition of cell death pathways controlled by the BCL2 gene family members. These findings are highly relevant for improvement of the islet isolation procedure and for clinical islet transplantation.
Prolactin: Does it exert an up-modulation of the immune response in Trypanosoma cruzi-infected rats?
Resumo:
During the course of infection by Trypanosma cruzi, the host immune system is involved in distinct, complex interactions with the endocrine system, and prolactin (PRL) is one of several hormones involved in immunoregulation. Although intensive studies attempting to understand the mechanisms that underlie Chagas` disease have been undertaken, there are still some pieces missing from this complex puzzle. Because data are scarce concerning the role of PRL involvement in Chagas` disease and taking into account the existence of crosstalk between neuroendocrine hormones and the immune system, the current study evaluates a possible up-regulation of the cellular immune response triggered by PRL in T. cruzi-infected rats and the role of PRL in reversing immunosuppression caused by the parasitic infection. The data shown herein demonstrate that PRL induces the proliferation of T lymphocytes, coupled with an activation of macrophages and the production of nitric oxide (NO), leading to a reduction in the number of blood trypomastigotes during the peak of parasitemia. During the acute phase of T. cruzi infection, an enhancement of both CD3+CD4+ and CD3+CD8+ T cell populations were observed in infected groups, with the highest numbers of these T cell subsets found in the infected group treated with PRL Because NO is a signaling molecule involved in a number of cellular interactions with components of the immune system and the neuroendocrine system, PRL can be considered an alternative hormone able to up-regulate the host`s immune system, consequently lowering the pathological effects of a T. cruzi infection. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Interactions between testosterone, estradiol, and inhibin in the control of gonadotrophin secretion in males are poorly understood. Castrated rams were treated with steroid-free bovine follicular fluid (bFF), testosterone, or estradiol and for 7 d (2 x 2 x 2 factorial design). Given independently, none of the exogenous hormones affected follicle-stimulating hormone (FSH) concentrations, but the combination of one or both steroids with bFF reduced FSH secretion. Testosterone and estradiol reduced luteinizing hormone (LH) pulse frequency (there was no synergism), and bFF had no effect. Plasma prolactin concentrations were not affected by any treatment. To locate the central sites of steroid action, castrated rams were bilaterally implanted in the preoptic area (POA), ventromedial nucleus (VMH), or arcuate nucleus (ARC). These implants did not affect FSH or prolactin concentrations, or LH pulse amplitude. The frequency of the LH pulses was not affected by testosterone in any site. Estradiol located in the ARC, but not the POA or VMH, decreased LH pulse frequency. In summary, FSH secretion is controlled by synergistic interactions between inhibin and estradiol or testosterone, whereas GnRH/LH pulse frequency is controlled by testicular steroids. Estradiol acts partly, at least, in the ARC, but the central site of action, testosterone remains unknown.
Resumo:
In sheep intracerebroventricular injection of PACAP (10 nmol) significantly (P < 0.01) stimulated the levels of the dopamine metabolite DOPAC within the medial basal hypothalamus las measured by in vivo microdialysis) and this effect was temporally correlated with a significant (P < 0.05) suppression in peripheral prolactin concentrations. This result is in accord with the hypothesis that PACAP suppresses prolactin secretion from the anterior pituitary gland by stimulating dopamine release from tuberoinfundibular dopaminergic neurons. (C) 1998 Elsevier Science B.V.
Resumo:
Recent evidence suggests that dopamine, acting via its D1 receptors, may function as a neurotransmitter in intrahypothalamic pathways involved in the stimulation of prolactin secretion. Functional dopamine D1 receptors are present in the ventromedial hypothalamic nucleus (VMH) and we hypothesized that they might be part of a prolactin-stimulatory pathway activated by stress. We tested this hypothesis in a series of experiments on sheep involving two different forms of stressors, audiovisual (barking dog) and high environmental temperature. We attempted to block the stimulation of prolactin secretion by infusion into the VMH of an antagonist specific for the D1 receptor. Ovariectomised, oestradiol-implanted merino ewes were surgically implanted with bilateral guide tubes directed at the VMH. After a 180 min pretreatment period, the ewes either were or were not exposed to a stressor (30 min of barking dog or 120 min at 35 degrees C, 65% relative humidity). D1 receptor antagonist, SCH23390 or vehicle (0.9% saline) was infused into the VMH (1.7 mu l/h, 120 nmol/h) for 60 min prior to and during the stressor period. Blood was sampled every 15 min via jugular cannulae and the plasma was assayed for prolactin, cortisol and growth hormone (GH). Both stressors significantly increased prolactin concentrations over control levels. SCH23390 infusion significantly attenuated the prolactin response to high environmental temperature, but had no effect on the prolactin response to audiovisual stress. Cortisol concentrations were significantly increased by audiovisual stress only and were not affected by SCH23390, GH concentrations were not changed by either stressor or infusion. Drug infusion alone did not affect the concentration of the hormones. The data suggest that the VMH D1 receptors are involved in a prolactin stimulatory pathway in response to high environmental temperature. The inability of the D1 antagonist to affect the response to the barking dog indicates that this pathway is stress-specific, implying that there is more than one mechanism or pathway involved in the prolactin response to different stressors.
Resumo:
Real-time Taqman(TM) RT-PCR was used to make quantitative comparisons of the levels of PrRP mRNA expression in micropunch brain samples from rats at different stages of the oestrous cycle and in lactation. The nucleus of the solitary tract and ventrolateral reticular nuclei of the medulla oblongata contained significantly (P < 0.05) greater levels of PrRP mRNA than any hypothalamic region. Within the hypothalamus, the highest level of PrRP expression was localised to the dorsomedial aspect of the ventromedial hypothalamus. All other hypothalamic regions exhibited significantly (P < 0.05) lower levels of expression, including the rostral and caudal dorsomedial hypothalamus. Very low levels of PrRP expression were observed in the arcuate nucleus, paraventricular nucleus, medial preoptic nucleus and ventrolateral aspect of the ventromedial hypothalamus. No significant changes in PrRP expression were noted in any sampled region between proestrus, oestrus or dioestrus. Similarly, PrRP expression in hypothalamic regions did not differ between lactating and non-lactating (dioestrous) animals. During validation of RT-PCR techniques we cloned and sequenced a novel splice variant of PrRP from the hypothalamus. This variant arises from alternative splicing of the donor site within exon 2, resulting in an insert of 64 base pairs and shift in the-codon:reading frame with the introduction of an early stop codon. In the hypothalamus and brainstem, mRNA expression of the variant was restricted to regions that expressed PrRP. These results suggest that PrRP expression in the hypothalamus may be more Widespread than previously reported. However, the relatively low level of PrRP in the hypothalamus and the lack of significant changes in expression during the oestrous cycle and lactation provides further evidence that PrRP is unlikely to be involved in the regulation of prolactin, secretion. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Introduction Lymphocytic prolactin (PRL) gene expression is detected in the majority of the immune cells and it is not known if this source contributes to hyperprolactinemia in systemic lupus erythematosus (SLE). We have therefore evaluated lymphocytic PRL secretion and gene expression in SLE and healthy controls. Methods Thirty SLE patients (ACR criteria) and 10 controls were selected for the study. Serum levels of PRL and macroprolactin were detected by immunofluorometric assay and gel filtration chromatography, respectively. The lymphocytic biological activity was determined by Nb2 cells bioassays. Lymphocytic PRL gene expression was evaluated by RT-PCR assay. Results The median serum PRL levels of the 30 SLE patients was higher than the control group (9.65 (1.9-38.9) vs. 6.40 (2.4-10.3) ng/mL, p=0.03). A significant difference was detected between median serum PRL levels of active SLE, inactive SLE and controls (10.85 (5-38.9) vs. 7.65 (1.9-15.5) vs. 6.40 (2.4-10.3) ng/mL), p=0.01). The higher frequency of mild hyperprolactinemia was detected among active SLE in comparison with inactive SLE and controls (7(38.9%) vs. 1 (8.3%) vs. 0(0%)), with statistical significance (p=0.02). Nb2 cells assay revealed uniformly low levels of lymphocytic PRL in active, inactive and control groups without statistical significance among them (24.2 (8-63) vs. 27 (13.6-82) vs. 29.5 (8-72) ng/mL), p=0.84). Furthermore, median lymphocytic PRL gene expression evaluated by RT-PCR assay was comparable in both active and inactive SLE groups (p=0.12). Conclusion This is the first study to exclude a lymphocytic source of PRL, pointing out a pituitary etiology for hyperprolactinemia in SLE. However, other sources from the immune system cannot be ruled out.
Effects of metoclopramide-induced hyperprolactinemia on the prolactin receptor of murine endometrium
Resumo:
Objective: To evaluate the effects of metoclopramide-induced hyperprolactinemia, on the prolactin receptor of murine endometrium. Design: Experimental study using the RNA extraction to detect tissue prolactin recepter isoforms by reverse-transcriptase polymerase chain reaction (RT-PCR). Setting: University-based laboratory. Animal(s): Seventy-two female swiss albino mice (Mus musculus), approximately 100 days old, were divided into six 12-animal groups: (Cl) nonoophorectomized mice given vehicle; (GII) nonoophorectomized mice treated with metoclopramide; (Gill) oophorectomized mice treated with metoclopramide; (GIV)oophorectomized mice treated with metoclopramide and 17 beta-estradiol; (GV) oophorectomized mice treated with metoclopramide and micronized progesterone; (GVI) oophorectomized mice treated with metoclopramide and a solution of 17 beta-estradiol and micronized progesterone. Intervention(s): Drugs were administered for 50 days. Following euthanasia, the middle portions of the uterine horns were removed, sectioned, and immediately frozen for RT-PCR procedures. Blood was collected for the dosage of prolactin and serum estrogen and progesterone using radioimmune assay. Main Outcome Measure(s): Identification of uterine prolactin receptor isoforms: Result(s): The PRL receptor and its isoform L were identified only in GI (control group) and GII (metoclopramide), the two groups with nonoophorectomized animals. The amount of PRL receptor mRNA and that of its isoform L from GII were the largest. No other isoforms of the prolactin receptor were identified in any of the groups. Conclusion(s): Our results suggest that replacement of estrogen and progestin may not increase the mRNA of endometrial PRL receptor in metoclopromide-induced hyperprolactinemia in rats after castration. (Fertil Steril (R) 2010;93:1643-9. (C)2010 by American Society for Reproductive Medicine.)
Resumo:
The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN`s control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats Were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: Prolactin (PRL), a peptide hormone produced by the pituitary gland, is involved in the interaction between the neuroendocrine and immune system. Since dopamine receptor antagonists increase serum levels of PRL, both PRL and dopamine receptors might be involved in the modulation of macrophage activity, providing means of communication between the nervous and immune systems. This study evaluated the effects of PRL and the dopamine antagonist domperidone (DOMP) on macrophage activity of female rats. Methods: Oxidative burst and phagocytosis of peritoneal macrophages were evaluated by flow cytometry. Samples of peritoneal liquid from female rats were first incubated with PRL (10 and 100 nM) for different periods. The same procedure was repeated to evaluate the effects of DOMP (10 and 100 nM). Results: In vitro incubation of macrophages with 10 nM DOMP decreased oxidative burst, after 30 min, whereas the PMA-induced burst was decreased by DOMP 10 nM after 2 and 4 h. Treatment with PRL (10 and 100 nM) for 30 min decreased oxidative burst and rate of phagocytosis (10 nM). After 2 h of incubation, 10 nM PRL decreased oxidative burst and phagocytosis intensity, but increased the rate of phagocytosis. On the other hand, after 4 h, PRL 10 and 100 nM increased oxidative burst and the rate of phagocytosis, but decreased intensity of phagocytosis. Conclusions: These observations suggest that macrophage functions are regulated by an endogenous dopaminergic tone. Our data also suggest that both PRL and dopamine exert their action by acting directly on the peritoneal macrophage. Copyright (C) 2008 S. Karger AG, Basel.